We've already seen several versions of touch-sensitive "electronic skin," that could be used to bring tactile sensation to robotic or prosthetic limbs. Most of these have focused either on the skin itself, or what lies beneath. Scientists from China's Harbin Institute of Technology, however, are taking a different approach – they've created an array of hair-like sensors that protrude up from an elastic skin.

Made to replicate the fine body hair on natural skin, the tiny sensors are made from pressure-sensitive, glass-coated, cobalt-based microwires. One end of each of these magnetic wires runs through a layer of silicone rubber, and connects with a circuit board underneath. The other end sticks out from the rubber skin, not unlike a hair.

NEW ATLAS NEEDS YOUR SUPPORT

Upgrade to a Plus subscription today, and read the site without ads.

It's just US$19 a year.

UPGRADE NOW

In lab tests, the sensors have been able to detect stimuli such as light breezes and even the landing of a fly. Additionally, when used with a two-finger robotic gripper that was grasping a block of plastic, they could detect slip and friction forces. In practical terms, this suggests that the technology could allow for robots to hold onto delicate objects lightly, yet increase their grip if they were to feel those items slipping.

A paper on the research was recently published in the journal ACS Applied Materials & Interfaces.

Source: American Chemical Society