Mzungu_Mkubwa
Physical limitations inhibit the \"just pull up to a charging station and fill \'er up!\" idea, what with the incredible amount of voltage/amperage required to transfer that much energy that quickly... not to mention the safety concerns in handling those \"quantities\" for the average consumer. There\'s a reason that high-power technicians are specially trained and equipped for dealing with this. Yes, recharging times need to be shorter, but they\'ll never be comparable to liquified fossil fuels in that regard (and that\'s okay!)

I think wireless (magnetic field) charging has potential - municipalities placing generating \"pads\" at traffic signals and public parking spots where the consumer is identified (by the vehicle\'s tag or RFID) and the power that\'s delivered is metered and billed accordingly.

Also, this tech (increased energy capacity) will greatly enhance the regen-braking aspect of electric vehicles, as their battery pack\'s currently limited ability in this area is a primary hindrance.
Muraculous
This is a winner. One step further would be to have a pre-charged facility capable of dilvering this energy quickly rather than from the grid. That way, a fully-contained fast-charging facility could be made ready during hours of low demand and, like a tanked facility, draw down on its reserves during the day.
EGM
MzunguMkubwa,

WHAT \"PHYSICAL LIMITATIONS\"?

The CHAdeMO fast charge method allows 125 Amps at 500 VDC ... that\'s 62.5 kW ... the Chevy Volt would charge (from empty ie. 10 kWhr) in about 9 minutes (if GM supported CHAdeMO).

ABB has developed DC fast charging stations that can deliver 125A, 250A or 500A DC current for charging, compatible with CHAdeMO protocols, or up to 250 kW. The Nissan Leaf would charge (from empty ie. 34 kWhr) in about 8 minutes.

With proper engineering, (safe) connectors and cables could handle 1,000 Amps at 1,000 VDC ... that\'s 1,000 kW or 1 MegaWatt. The Tesla Roadster would charge (from empty ie. 52 kWhr) in about 3 minutes.

The \"Grid\" needs to be \"buffered\" with banks of batteries that charge overnight. EVoasis.com EVSTAT Charging Stations have underground battery banks that handle multiple vehicles for fast charging.
Facebook User
10 minute fast charge batteries exist and are use in Proterra Bus. check out
http://www.youtube.com/watch?v=4V-D8p3eLuA at around 0:40 sec for the statement

http://www.proterra.com/index.php
Amit Hizak
great step to a clean enviorment
Ed
\"\"If you had five-minute charge capability, \"
Can you imagine the power capacity of the charging station that can dump the amount of electricity into a battery? The average 120 volt plug can supply a maximum of 1,500 watts (or 1.5kw/hr) it takes about 12 hours for a full charge, so that\'s 12 X 1.5KW or 18 thousand watts...compress this into 5 minutes that\'s 216 thousand watts of power that will need to flow from the charging station into your batteries! I don\'t know about you, but I would not want to stand anywhere other than an armored bunker while that thing charges! It\'s like in the movie Demolition Man where where Wesley Snipes sticks the shock rod into the charging port of a police car....BOOM!
harry_72
\"I think wireless (magnetic field) charging has potential - municipalities placing generating \"pads\" at traffic signals and public parking spots where the consumer is identified (by the vehicle\'s tag or RFID) and the power that\'s delivered is metered and billed accordingly.\"
Take that one step further do it on main arterial roads charge while driving
Charles Bosse
They do exist, but the point about safety is still valid. Of course, safety is a problem with traditional fuels also, so maybe we need to temper this idea a bit.
The problem I see with these batteries is that their overall lifespan is probably not improved over traditional batteries, because they will have the same problems of surface build-up and holes that cause normal batteries to dramatically reduce in effectiveness in a few years.
Super/ultra capacitors would be a great solution for this if they didn\'t tend to be tolerant of only low voltages. I still think that we will have to move more toward capacitive solutions than battery solutions to see real long term improvement in EV power.
Racqia Dvorak
@EGM and @Muraculous
To really support widespread distribution and use of such stations to the majority of the US populous, the energy grid would have to not only be massively retrofitted, but also supplied by the only reasonable energy source for such an endeavor: nuclear energy.
Unfortunately, that path is most likely dead due to political cowardice. Though, I don\'t think I\'d put any in California...
Chris Clarke
When harry_72 talks about charging while driving on arterial roads, I can\'t help but think of Scaletrix ... You know - Slot Cars..? Is the future in Kids toys? Wow - the scale speed of those things is fantastic!