Anne Ominous
Sounds like bollocks to me. That is to say, it appears to me that this experiment is deeply flawed.
Here is the flaw in the argument, if this "simplified" description can be taken at face value: the experimenters are NOT "influencing" the photons. They are just measuring the relevant polarizations. There is nothing influencing what those polarizations are.
Thought experiment: let's say you set up a machine to throw 2 tennis ball. It spins one to the left, and the other to the right, at random. In our experiment we assume that the machine never makes a mistake. So the spin of the balls is "entangled", in that if you measure the spin of one, the spin of the other is ALWAYS opposite.
You then set the machine to throw the balls, one ball each to two different observers. Each observer measures, when the balls arrive, what spin the ball has. (If you want to make it more analogous to the polarization experiment, you can test for certain directions of spin at random.)
Each observer will see a perfect correlation of spins! Even though neither of the balls were influenced in any way by the observer.
In order for this experiment to have any value, they would have to AFFECT the polarization of one photon (i.e., change the polarization from one direction to another), and THEN measure the result at the other observer's station. If you don't, you're simply verifying that they are entangled. You aren't actually measuring the speed of any "influence", because as far as you know there has been no influence. You can say that observation "fixes" the polarization in a particular state. But observing the polarization is NOT NECESSARILY "influencing" the quantum state of the particle. It may have already been in that state anyway; you simply don't know.
If any "influencing" of the particles other than simple observation was done here, that was gratuitously left out of the article.
Gary McMurray
Hope Strings Eternal
Hi, Anne, I'm afraid that, in quantum mechanics, measuring the polarization IS influencing the photons. The problem with your argument is that the polarization of the photons doesn't have any particular direction until they are measured. When the polarization is measured, that changes the quantum state of the photon. Best, Brian Dodson
S Michael
I don't understand you so called scientist, they are not entangled, they bump up against each and transmit their energy that is not lost over great distance. The faster the speed the more the energy. The smaller the particle the faster it travels when it is struck by larger particles. What is so hard about this.
Pavel Chernov
Anne Ominous is right! +1
re; Anne Ominous
They were randomly shifting the polarization of both particles before observing and the matched particles were still showing the same polarization.
Michiel Mitchell
this sounds like potential for very fast internet, in 6 months from whenever someone is wondering about when they will get to releasing it commercially... just think, stick one half of a pair of 9 photons on a pcb in one modem, the other half in another modem TADA.... instant internet connectivity, no matter what the distance between the 2 modems.
I agree with Anne,
How could you ever know that measuring something influences it? By definition it is impossible to know the value before you measured it.
There are (at least) two explanations for the results of this experiment, one is the simple common sense explanation that nearly anyone would come up with. The other postulates an unnatural non-deterministic state of matter, the direct influence of a conscious observer over matter and faster than light communication. I think Occam's razor could come in very handy here.
I'm sorry but I see no evidence here of faster than light communication.
Flipider Comm
The space between Alice and Bob moved by mechanism as result of their quantum entanglement.
The influence on space between Alice and Bob contracted speed was about 10,000 times the speed of light, but continent in space stayed mostly still.
Continent in space can not travel faster than the speed of very same energy that matter is built of in local slow clumping formation of matter, stars and galaxies. ...
There is a popular misinterpretation regarding experiments investigating the EPR paradox. This misinterpretaton is well explained for example in the paper of W. A. Hofer: "Solving the Einstein-Podolsky-Rosen puzzle: the origin of non-locality in Aspect-type experiments" (
Abstract: "So far no mechanism is known, which could connect the two measurements in an Aspect-type experiment. Here, we suggest such a mechanism, based on the phase of a photon's field during propagation. We show that two polarization measurements are correlated, even if no signal passes from one point of measurement to the other. The non-local connection of a photon pair is the result of its origin at a common source, where the two fields acquire a well defined phase difference. Therefore, it is not actually a non-local effect in any conventional sense. We expect that the model and the detailed analysis it allows will have a major impact on quantum cryptography and quantum computation."
And another important paper: A. Khrennikov, "Violation of Bell's inequality by correlations of classical random signals", Phys. Scr. 2012 014003 (