Researchers have created a new aerogel that boasts amazing strength and an incredibly large surface area. Nicknamed ‘frozen smoke’ due to its translucent appearance, aerogels are manufactured materials derived from a gel in which the liquid component of the gel has been replaced with a gas, resulting in a material renowned as the world’s lightest solid material. The new so-called “multiwalled carbon nanotube (MCNT) aerogel” could be used in sensors to detect pollutants and toxic substances, chemical reactors, and electronics components.
Although aerogels have been fabricated from silica, metal oxides, polymers, and carbon-based materials and are already used in thermal insulation in windows and buildings, tennis racquets, sponges to clean up oil spills, and other products, few scientists have succeeded in making aerogels from carbon nanotubes.
The researchers were able to succeed where so many before them had failed using a wet gel of well-dispersed pristine MWCNTs. After removing the liquid component from the MWCNT wet gel, they were able to create the lightest ever free-standing MWCNT aerogel monolith with a density of 4 mg/cm3.
MWCNT aerogels infused with a plastic material are flexible, like a spring that can be stretched thousands of times, and if the nanotubes in a one-ounce cube were unraveled and placed side-to-side and end-to-end, they would carpet three football fields. The MWCNT aerogels are also excellent conductors of electricity, which is what makes them ideal for sensing applications and offers great potential for their use in electronics components.
A report describing the process for making MWCNT aerogels and tests to determine their properties appears in ACS Nano.
tris bipyridine ruthenium. A cubic foot of the material should be sufficient to support enough photocatalyst on board a motor vehicle to generate sufficient hydrogen and oxygen from water to operate a fuel cell to generate electricity for the vehicle\'s electric motor. The translucence structure would enable sunlight, or electric lighting at night, to penetrate all the way through the material. A gas separation system would be needed to separate the hydrogen from the oxygen. Generating hydrogen and oxygen on board motor vehicles from water would obviate the need to establish hydrogen re-filling stations.
Note that I am writing about a photocatalytic system, not a photo-electrochemical system.
Water is the only portable, non-carbon fuel source in the world that is available in the huge quantities required to supplant gasoline and diesel oil. Water requires no exploration, drilling, refining, tanker transportation, service station infrastructure, mining, disposal of fly ash or nuclear waste. Futhermore, there would be no pollution of the atmosphere or our waters, and no atmospheric oxygen would be consumed.
Origo
I wonder about ads on TV for your this magic cube.
As such (and not bothering to store hydrogen and solving all the issues around it) this would indeed be magnificent. On small scale for a single off-gridder or for utility to produce electricity (not necessarily hydrogen due to all the issues with it) on large scale. Or mid-range for hydrogen refilling station hydrogen car as Origo suggests (even though I also do not believe hydrogen cars would ever be practical) ...but it would bypass the hydrogen distribution step.
You are producing hydrogen (energy) with this system and not just using it to store energy derived from some other source.
As far as the latter is concerned, you will not be able to collect more energy then energy density of sunlight in your location, which is in the area of a kilowatt per square meter (ten sq feet) at noon. You cannot exceed this as you would produce energy out of nothing/create perpetuum mobile of the first (strong) kind. The real world efficiency would be at least an order of magnitude below that. This gives you hundreds of watts. Such a system would definitely NOT be able to drive your car (with you cubic foot of frozen smoke doped with catalysts). So the conclusion #1 is the proposal is not really practical. (You could use concentrators and do other tricks which would increase complexity of your set up and its cost, not a good thing to do).
The other question was if it is \"real\" by which I mean doable...if the photo catalyst would bond to the frozen smoke lattice and not washed out, if it would work at all... I cannot answer this part without specific knowledge and background.