"Marvel molecule" could enable new treatments for a range of inflammatory diseases

The newly identified molecule could hold the key to improved treatments for a variety of inflammatory diseases (Shutterstock)

A team of researchers at Trinity College Dublin has unearthed what they are calling a "marvel molecule." Said to be capable of suppressing a key activator of various inflammatory diseases, it is hoped the molecule will lead to more effective treatments for conditions ranging from Alzheimer’s disease, to rheumatoid arthritis and motor neuron disease.

The massive potential of the molecule lies in its ability to block a key activator of inflammatory diseases known as the NLRP3 inflammasome. Inflammasomes, protein clusters responsible for triggering a range of inflammatory processes, have long been considered potential therapeutic targets for treating a range of conditions.

Through the study, the researchers found the molecule, dubbed MCC950, to be very promising in warding off multiple sclerosis. But what really pleased the researchers was the fact that the target, the NLRP3 inflammasome, also plays a strong role in the onset of other inflammatory diseases including Alzheimer’s, atherosclerosis, gout and Parkinson's disease.

"MCC950 is blocking what was suspected to be a key process in inflammation," says Dr Rebecca Coll, lead author of the paper. "There is huge interest in NLRP3 both among medical researchers and pharmaceutical companies and we feel our work makes a significant contribution to the efforts to find new medicines to limit it."

The findings are said to confirm that while different inflammatory conditions may cause different parts of the body to become inflamed, the diseases all share a common process. This has the potential to spawn new kinds of cheaper, non-invasive treatments for inflammatory diseases.

"MCC950 is able to be given orally and will be cheaper to produce than current protein-based treatments, which are given daily, weekly, or monthly by injection," says Professor Matt Cooper from the University of Queensland, a co-senior author of the study. "Importantly, it will also have a shorter duration in the body, allowing clinicians to stop the anti-inflammatory action of the drug if the patient ever needed to switch their immune response back to 100 percent in order to clear an infection.”

The researchers say that the molecule may also benefit sufferers of Muckle-Wells disease, a rare genetic disorder that can cause rashes, joint pain and other inflammations. Treating blood samples of patients with Muckle-Wells disease, the molecule was shown to block the rogue gene that triggers these recurring inflammatory processes.

"We are really excited about MCC950," says Professor of Biochemistry at Trinity College Dublin and joint senior scientist behind the discovery. "We believe this has real potential to benefit patients suffering from several highly debilitating diseases, where there is currently a dire need for new medicines."

The research was published in the journal Nature.

Top stories

Recommended for you

Latest in Medical

Editors Choice