While they were each once hailed as the lightest solid material ever made, metallic microlattice and aerogel have now been moved back to second and third place (respectively), with aerographite taking the crown. Developed by a team from the Technical University of Hamburg and Germany’s University of Kiel, the material is composed of 99.99 percent air, along with a three-dimensional network of porous carbon nanotubes that were grown into each other.
Aerographite has a density of less than 0.2 milligrams per cubic centimeter, which allows it be compressed by a factor of 1,000, then subsequently spring back to its original state. Despite its extremely low density, it is black and optically-opaque in appearance. By contrast, the density of metallic microlattice sits at 0.9 mg per cubic centimeter.
The scientists discovered the sponge-like material when they were researching three-dimensionally cross-linked carbon structures. It is reportedly much more robust than the relatively fragile aerogel, being able to withstand at least 35 times as much mechanical force for its density. It is grown in a one-step process using zinc oxide templates, which allow blocks of the material to be created in various shapes, in sizes as large as several cubic centimeters.
Because it is electrically conductive and chemical-resistant, it could potentially find its way into devices such as batteries.
The development of aerographite was officially announced in a paper that was published yesterday, in the journal Advanced Materials.
Source: Technical University of Hamburg (German) via New Scientist
@christopher, windykites1: By the way, a micro-lattice structure like i mentioned would kill the sponge effect. This would partially enable christopher's idea to work. I've often thought of ways to have a structure to contain a buoyant vacuum like this but could never think of the right materials. Ooh, how about an egg shaped solid structure made of micro-lattice-aerographite, covered in a layer of plastic wrap (or other light airtight films not prone to tearing) and with a reinforced disk shape in the center of the egg (the weak-spot where pressure will be diverted to due to the egg shape). Just a thought.
On the example mentioned in the article towards it possibly being used in electrical applications, I predict an effect similar to touching steel wool to both poles of a battery.