Energy

Lockheed Martin announces it's working on a compact fusion reactor

Lockheed Martin announces it's...
Lockheed sees its compact fusion reactor as ready in 10 years
Lockheed sees its compact fusion reactor as ready in 10 years
View 4 Images
Lockheed sees its compact fusion reactor as ready in 10 years
1/4
Lockheed sees its compact fusion reactor as ready in 10 years
The Lockheed compact fusion reactor is ten times smaller than the ITER reactor
2/4
The Lockheed compact fusion reactor is ten times smaller than the ITER reactor
Tom McGuire, compact fusion lead for the Skunk Works’ Revolutionary Technology Programs
3/4
Tom McGuire, compact fusion lead for the Skunk Works’ Revolutionary Technology Programs
The compact fusion reactor is being developed at Lockheed's Skunk Works
4/4
The compact fusion reactor is being developed at Lockheed's Skunk Works

Fusion reactors are a bit like buses; you wait forever for one, then two come along at once. No sooner does the University of Washington announce that it’s working on a breakthrough compact fusion reactor (CFR) than Lockheed Martin says that its Revolutionary Technology Programs unit, AKA the Skunk Works, in Palmdale, California has one that could be ready for market within ten years.

Fusion reactors with their ability to provide practically unlimited energy from an inexhaustible fuel source have seemed like the ultimate answer to mankind’s energy needs for over half a century. But the problem has always been how to produce a self-sustaining fusion reaction on Earth that generated more energy than was needed to produce it. So far, the most promising answer has been the ITER project, whose international backers believe it could be a major advance. But it isn't scheduled for completion until the late 2020s and won’t be fully operational until 2040 – not to mention the fact that the reactor is a massive, extremely expensive piece of engineering.

Lockheed’s CFR, known as the T4, has until now been something of a mystery, though the company did release some information about it last year. However, the wraps are coming off a bit and Aviation Week recently published an exclusive look at the design provided by Tom McGuire, compact fusion lead for the Skunk Works’ Revolutionary Technology Programs.

Tom McGuire, compact fusion lead for the Skunk Works’ Revolutionary Technology Programs
Tom McGuire, compact fusion lead for the Skunk Works’ Revolutionary Technology Programs

According to McGuire, the Lockheed CFR is about the size of a business-jet engine and burns a mixture of heavy hydrogen isotopes called deuterium and tritium for fuel. Under sufficient temperature and pressure, the ionized hydrogen atoms fuse together, forming helium 4 and releasing tremendous amounts of energy.

Instead of a torus, the Lockheed CFR uses a magnetic bottle with magnetic “cusps” at either end to contain the plasma with much tighter lines of magnetic force than ITER and a better curve to the field architecture. Superconducting coils generate a new magnetic-field geometry for the CFR based on a combination of properties from previous reactor designs, such as the Polywell reactor, which uses a negative charge to attract positive ions to increase collisions and hence the likelihood of fusion.

According to Lockheed, the problem with ITER is that it’s a Tokamak; a 500 MW reactor that uses large magnetic fields to form a small amount of hydrogen into a ring and heats it. It is certainly capable of generating a fusion reaction, but it’s restricted by what’s called the Beta limit. That is, the ratio of the ionized hydrogen plasma pressure in the torus to the magnetic pressure generated by ITER’s superconducting magnetic rings. You can think of the Beta limit as being like the strength of the rubber making up an inner tube, which for ITER is about a five percent ratio. If the plasma pressure exceeds this, it’s like overpumping the inner tube, and it bursts. Or in this case, the field collapses.

The Lockheed compact fusion reactor is ten times smaller than the ITER reactor
The Lockheed compact fusion reactor is ten times smaller than the ITER reactor

The Lockheed CFR’s plasma is trapped in one spot and instead of a static magnetic field trying to hold in plasma as it’s trying to push out with increasing force, the plasma sets up a feedback mechanism that makes the field stronger. According to Lockheed, this makes the Beta limit reach 100 percent and beyond. This means the reactor’s field is more stable, which means there’s less pressure, which means the CFR can generate as much power as ITER, but can be only a tenth of the size.

McGuire says that the advantages of the CFR’s design is that it’s much easier to build than massive reactors like ITER, and needs much less infrastructure. In addition, development is much more rapid because the smaller design means faster build and test cycles that take months instead of years.

Once the CFR reaches a practical stage, Lockheed sees the technology having a much wider range of applications than current nuclear power based on the fission of heavy elements, such as uranium and plutonium. The company says that a CFR is much cleaner; produces only short-lived, low-level wastes; carries no danger of weapons proliferation, and can even process its own hydrogen fuel on an as-needed basis.

The compact fusion reactor is being developed at Lockheed's Skunk Works
The compact fusion reactor is being developed at Lockheed's Skunk Works

Lockheed envisions the CFR as a way of refitting conventional gas turbine power plants by replacing their combustion chambers with heat exchangers linked to the reactor. According to the company, a complete 100 MW reactor would fit in a standard shipping container and run for years on less than 25 kg (55 lb) of fuel – and that such plants could be running in 15 years. These reactors would be portable in the same manner as the small reactors used on ships and submarines.

According to McGuire, compact reactors could not only solve energy problems, but they could also be used for large-scale desalination plants in drought-stricken regions, and could even be used to respark abandoned nuclear power applications. Back in the 1950s, the United States and the Soviet Union experimented with nuclear powered airplanes and the US even put a nuclear cargo freighter into service, but none of these efforts went anywhere. Due to their much greater safety, Lockheed sees future ships and planes being built that never need refueling thanks to CFRs, as well as spaceships capable of getting to Mars in a month.

Lockheed is currently seeking partners in the CFR enterprise as development proceeds. The Skunk Works is working on a prototype technology demonstrator version to show that the physics behind the design is sound. McGuire sees this coming on line in five years, followed by a production version five years after that.

The video below discusses the Lockheed CFR.

Source: Lockheed Martin

Lockheed Martin: Compact Fusion Research & Development

25 comments
Deres
I am speechless. Note that the prototype is named T4 which could means it is the fourth one.
Mel Tisdale
Whenever I see the words 'Skunk Works', I immediately think 'Sirius Disclosure Project.' So,with that very much in mind, I think this project could do with being the subject of the same level of government support that a LFTR (thorium) programme should be, i.e. 'intense' support. If I am right in my suspicions, it is guaranteed to be a success. It is difficult not to agree with the Our Finite World blog of Gail Tverberg, a highly regarded actuary who specialises in oil supply and associated matters. Especially so the way things are currently unfolding globally. Perhaps we can see this particular fusion project as the cavalry coming over the hill just in the nick of time. Let's hope so. Now all we need is a way of sensibly electrifying transport and agricultural machinery. How about it, Skunk Works? Have you got any other secrets hidden somewhere that could solve the problem?
Slowburn
The promise of fusion power still 20 years away.
hdm
Fusion from an open source environment (at least more so than the likes of Lockheed Martin) is the better bet. The monetized version from a military establishment is the interest of nobody. It is all good... there are more than two in the world getting this done... and Lockheed will have some niche on the military side, but this revolutionary power source is for the world, not for Lockheed shareholders to pick pockets with.
zevulon
to the critical minded observer, this project description and NONE of the articles released in the barrage of news about this skunkworks project in the last few weeks, and (since last year) describe ANY OF THE DRAWBACKS OR STUMBLING BLOCKS, of using a cylinder geometry with end effects and injection complexities. they are containing a static plasma in a ball without moving it? there are so few details about this project why bother announcing it? why not just DEMONSTRATE THAT IT IS WORKING? most likely, because it doesn't work.......at all.
bobcat4424
Just because this is coming out of Lockheed does not mean it is strictly militarized. The Skunk Works has long been involved in space flight and while power generation and the environment are the most compelling uses of fusion power, a reasonably-sized fusion rocket motor would be a godsend to NASA. The way that the Skunk Works is different is that it is given a problem and allowed to think completely outside the box with the financial backing to really accomplish something new and original.. And a demonstrator device is different that a pilot project. In a pilot project, only the proof of concept would have to be made to be called successful. This is usually, but not always, done to attract funding. Think of it as a working model. The next step is a demonstrator. The demonstrator must be able to generate significantly more fusion power than it requires to run and be scalable. Next comes the prototype. This one will have to generate commercial quantities of commercially viable power. Then from on it is P+1, P+2, etc as the design is improved as newer units go into production.
Justin Niessner
Did nobody else catch the names of the fuels for this reactor? Deuterium and Tritium? I desperately want to believe the article but the fact that it's using the same materials as the Enterprise-D warp engine from Star Trek leaves me more than a little skeptical. http://en.memory-alpha.org/wiki/Deuterium
BeWalt
I've partly powered my house with fusion energy for ten years. It's called solar photovoltaic cells for electricity, and solar thermal for hot water. Adding to the system annually and improving my house all the time, and I will be passing 100% (and selling to the grid) within ten years. No complex machine. No high priest caste needed to run it. Free for life, will even *make* money for me (eventually).
Abby Normal
I hope we as a civilization can, soon enough, glom onto fusion and kick fission into the historical trash can.
StWils
I could not care less about whining & wingeing about how this demonstrator is not road ready right now so obviously this is a bad idea, etc. Pinheads whined about the early telegraph, then the early telephone, also this electric power stuff, etc. All are things that worked pretty well I think! Maybe this will mature in time to strap onto Miguel Alcubierre's theorized warp drive if it turns out to be buildable? Can negative energy be derived from a fusion plasma?