Be it on the inside or the outside, the human body is becoming host to an ever-increasing array of electronic devices that need to wirelessly communicate with each other. Now engineers working at the University of California, San Diego (UCSD) have come up with a different type of wireless communication that sends ultra low-power magnetic fields through the human body. This makes it extraordinarily more energy efficient and secure from prying eyes than comparable wireless communication technologies.

Connecting and communicating with devices in and around the human body, such as smartwatches, implanted smart monitors, or even ingestible wireless sensors, generally requires that each of these transmit to a receiver using Bluetooth. Since the electromagnetic radiation used by Bluetooth to transmit data does not easily pass through the human body, these devices must use a lot of power and therefore also carry relatively bulky batteries to power their transmitters.

Though still in development, the engineers say their new system is superior to existing radio communications technologies in this field, claiming path losses an incredible 10 million times lower than those associated with comparable Bluetooth device communication.

"In the future, people are going to be wearing more electronics, such as smart watches, fitness trackers and health monitors," says Patrick Mercier, a professor in the Department of Electrical and Computer Engineering at UCSD and lead author of the study. "All of these devices will need to communicate information with each other. Currently, these devices transmit information using Bluetooth radios, which use a lot of power to communicate. We're trying to find new ways to communicate information around the human body that use much less power."

To construct their prototype, the engineers used coils of copper wires insulated with PVC tubing. At one end of this arrangement, the wires terminate at a receiver and analyzer, while at the other end the wires are formed into coils that wind around three parts of the body: the head, the arms, and the legs. In this way, the coils act as inductors for the application of energy and the production of magnetic fields and allow the body itself to act as a sort of waveguide for those fields. Using this system, the researchers were able to transmit and measure ultra-low path loss signals from from arm to arm, from arm to head, and from arm to leg.

"This technique, to our knowledge, achieves the lowest path losses out of any wireless human body communication system that's been demonstrated so far," said professor Mercier. "This technique will allow us to build much lower power wearable devices."

Creating devices with lower power requirements will, in turn, reduce battery requirements, leading to smaller and more efficient devices. In this way, not only could wearables and monitors be made smaller with longer battery life, but it would also reduce the size of ingestible transmitters to something much easier to swallow.

"A problem with wearable devices like smart watches is that they have short operating times because they are limited to using small batteries,” said Jiwoong Park, a Ph.D student in Mercier's lab. “With this magnetic field human body communication system, we hope to significantly reduce power consumption as well as how frequently users need to recharge their devices."

According to the researchers, beyond the benefits of ultra-low-power energy consumption, magnetic field human body communication may offer greater security than current wireless communication technologies. This is because Bluetooth radio communication links take place through open air and, potentially, someone could possibly intercept these signals and compromise a person's privacy.

With magnetic field human body communication, however, the communication is contained within the body itself and does not need to link to separate wireless devices. When monitoring the system, the researchers measured a dramatic decrease in signals radiated from the body and almost no possibility of transmitting information from one person’s magnetic communication system to another, even in close proximity.

"Increased privacy is desirable when you're using your wearable devices to transmit information about your health," said Jiwoong Park, a Ph.D student in Mercier’s Energy-Efficient Microsystems Lab.

The major downside of the technology is, although it is suitable for devices that wrap around a part of the body, such a smart watches, headbands and belts, it won't work with things like small patches stuck on the skin. This is because the magnetic fields need circular geometries to propagate through the human body.

The results of this research were recently presented at the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society in Milan, Italy.

Source: UC San Diego

View gallery - 2 images