Inspired by the fluid that wraps your brain in a protective, wet blanket, Multi-directional Impact Protection System (MIPS), which is the name of both the technology and the company behind it, claims to offer superior protection for your head. Major helmet manufacturers are starting to turn on to what is self-hailed as the "next generation" of helmet design.
The system developed by the Stockholm-based company originated at Sweden's Royal Institute of Technology and Karolinska Institute and is based on concepts pulled from physiology. The human brain is surrounded by cerebrospinal fluid, which allows it to slide around inside the skull upon head impact and protect it from direct impact. MIPS helmets don't use fluid, but sandwich a layer of low-friction material between the outer shell and the inner liner. This material allows the shell to move around in relation to the liner, thereby limiting the forces passed straight through to your head. The same way your brain "floats" in the cerebrospinal fluid, your head floats inside the helmet.
The MIPS system was designed specifically for oblique impacts where the helmet hits the ground at an angle. According to company research, the mobile shell protects the head more effectively on these types of falls. In fact, its testing indicates that MIPS technology can reduce the forces to the brain by up to 40 percent compared to other helmets on a 45-degree angle impact. Its vertical-impact protection is comparable to traditional helmets.
MIPS claims that standard helmet design is concerned only with vertical impacts. According to its literature, helmet designers drop helmets vertically onto the flat ground to determine how well they absorb impact. Of course, not all falls result in your head dropping straight down into the ground. In fact, we'd bet that most falls involve the very type of oblique impacts that MIPS seeks to protect against. If you think about falling off a bike or on ski slope, there's a good chance you aren't going to land squarely on your head, but will knock your head at an angle.
MIPS licenses its technology to a variety of major helmet manufacturers, including Scott, Red and POC. The technology is currently used in bike, snow and equestrian helmets, and the company has plans to expand into other types of helmets. MIPS CEO Niklas Steenberg says that the company hopes that its technology will eventually be analogous to airbags in the auto industry, a "non-negotiable ingredient" that is a part of all products in its industry.
It looks like the classic foam bucket is becoming a thing of the past. We recently covered Vaco12 helmet technology, which aims to spread impact out across a three-dimensional array of beads. A couple years ago we saw the Lazer Superskin, a sort of reverse-MIPS that put a low-friction membrane on the outside of the helmet to decrease chance of injuries.
The video below shows how the MIPS technology works.
Source: MIPS
The trick is adapting this approach to a helmet that is comfortable enough to be worn and not so restrictive of the user's movement or cooling air flow over the head as to preclude their use. The first generation of bicycle helmets from Bell had the latter defect. A rider could choose either a possible increased risk of brain damage without the helmet or the certainty of heat stroke with the helmet.