Six years ago, Dr. John Khier of Boston Children’s Hospital began investigating the idea of using injectable oxygen on patients whose lungs were incapacitated or whose airways were blocked. He was prompted to do so after a young girl that he was caring for passed away – she succumbed to a brain injury, which resulted when severe pneumonia caused her lungs to stop working properly, which in turn caused her blood oxygen levels to drop too low. Now, Khier is reporting that his team has injected gas-filled microparticles into the bloodstreams of oxygen-deprived lab animals, successfully raising their oxygen levels back to normal levels within seconds.
The microparticles are created using a device called a sonicator, which uses high-frequency sound waves to mix lipids (fatty molecules) and oxygen gas together. This results in the mixture forming into particles about two to four micrometers in diameter, each of which consists of an oxygen core surrounded by a lipid outer shell. Because the particles are so small and flexible, they are able to squeeze through capillaries – by contrast, if straight oxygen gas were injected, bubbles of it could block the blood flow and cause embolisms.
The microparticles are combined with a liquid carrier, so they can then be injected into the bloodstream. That suspension contains three to four times the amount of oxygen as regular red blood cells, so relatively small amounts of it are required, depending on how much of an oxygen level boost is required.
When the microparticle solution was tested on lab animals with blocked tracheas, it was able to keep them alive for up to 15 minutes without their taking a single breath, plus it also reduced low-oxygen-related cardiac arrests and organ injuries.
It is intended that the treatment would be used mainly in emergency response scenarios, to hold non-breathing patients over for 15 to 30 minutes – the carrier liquid would overload the bloodstream if used for longer. Khier and his team envision paramedics, emergency clinicians or intensive care personnel keeping supplies of the microparticle solution close at hand and ready to go, should it be needed.
“This is a short-term oxygen substitute—a way to safely inject oxygen gas to support patients during a critical few minutes,” he said. “Eventually, this could be stored in syringes on every code cart in a hospital, ambulance or transport helicopter to help stabilize patients who are having difficulty breathing.”
Although already-available blood substitutes are capable of carrying oxygen, they still first need to be oxygenated by functioning lungs.
A paper on the research was published this Wednesday in the journal Science Translational Medicine.
Source: Boston Children’s Hospital
Six years ago, Dr. John Khier of Boston Children’s Hospital began investigating the idea of using injectable oxygen on patients whose lungs were incapacitated or whose airways were blocked. He was prompted to do so after a young girl that he was caring for passed away – she succumbed to a brain injury, which resulted when severe pneumonia caused her lungs to stop working properly, which in turn caused her blood oxygen levels to drop too low. Now, Khier is reporting that his team has injected gas-filled microparticles into the bloodstreams of oxygen-deprived lab animals, successfully raising their oxygen levels back to normal levels within seconds.
The microparticles are created using a device called a sonicator, which uses high-frequency sound waves to mix lipids (fatty molecules) and oxygen gas together. This results in the mixture forming into particles about two to four micrometers in diameter, each of which consists of an oxygen core surrounded by a lipid outer shell. Because the particles are so small and flexible, they are able to squeeze through capillaries – by contrast, if straight oxygen gas were injected, bubbles of it could block the blood flow and cause embolisms.
The microparticles are combined with a liquid carrier, so they can then be injected into the bloodstream. That suspension contains three to four times the amount of oxygen as regular red blood cells, so relatively small amounts of it are required, depending on how much of an oxygen level boost is required.
When the microparticle solution was tested on lab animals with blocked tracheas, it was able to keep them alive for up to 15 minutes without their taking a single breath, plus it also reduced low-oxygen-related cardiac arrests and organ injuries.
It is intended that the treatment would be used mainly in emergency response scenarios, to hold non-breathing patients over for 15 to 30 minutes – the carrier liquid would overload the bloodstream if used for longer. Khier and his team envision paramedics, emergency clinicians or intensive care personnel keeping supplies of the microparticle solution close at hand and ready to go, should it be needed.
“This is a short-term oxygen substitute—a way to safely inject oxygen gas to support patients during a critical few minutes,” he said. “Eventually, this could be stored in syringes on every code cart in a hospital, ambulance or transport helicopter to help stabilize patients who are having difficulty breathing.”
Although already-available blood substitutes are capable of carrying oxygen, they still first need to be oxygenated by functioning lungs.
A paper on the research was published this Wednesday in the journal Science Translational Medicine.
Source: Boston Children’s Hospital
http://en.wikipedia.org/wiki/Plasmapheresis
With this foam suspension, do you still need erythrocytes to transfer the oxygen or does the foam itself work like red blood cells? (Oxygen-foam to cell vs. oxygen-foam to erytrocytes to cells). Not needing erythrocytes would be incredible, because you could use it as a blood replacement at the place of accident.
Of course, this would also release free radicals like crazy prematurely aging.
It conceivably could save lives of marathoners who collapse at the end of the race.
Great for mountain climbers who get in trouble too.
Sounds like Star Trek's "tri-ox compound". Though it looks more like the fluid the Jem'Hadar had flowing into their necks on DS9.
actually CO2 is not THAT bad as your old physiology classes made you to believe. Check it up at http://www.normalbreathing.com/CO2.php
A whole alternative therapy approach around Buteyko is based on this assumption. When you breath normally you "hyperventilate" according to them - and you deprive your body tissues of oxygen that has had no time to get absorbed in your CO2-driven "hyperventilation" [your normal] breathing. If CO2 is "not that bad" you really can breathe slower, oxygenate your tissues perfectly, resolve your chronic diseases, achieve "superhealth" and even erratic emotional states stabilize in more rational thinking mode. (They have been partially accepted into mainstream for asthma treatment w/o validating their extraordinary claims in general.)
"The microparticle solutions are portable and could stabilize patients in emergency situations, buying time for paramedics, emergency clinicians or intensive care clinicians to more safely place a breathing tube or perform other life-saving therapies, says Kheir."
So this is just to keep victims alive for a few minutes until they can be transported to a hospital, where doctors can intubate with a respirator, open the airway or even put them on a heart-lung machine in cases of complete lung failure.
@sascha.kremers,
You still need blood. This is a way of getting oxygen into the blood when the lungs can't. But erythrocytes still need to do the actual work of oxygen transport.