3D Printing

World's first 3D-printed stainless steel bridge spans Dutch canal

World's first 3D-printed stainless steel bridge spans Dutch canal
The 3D-printed bridge measures 12.2 m (40 ft) in length and has a width of 6.3 m (20 ft)
The 3D-printed bridge measures 12.2 m (40 ft) in length and has a width of 6.3 m (20 ft)
View 5 Images
The 3D-printed bridge was transported to its final destination by boat
1/5
The 3D-printed bridge was transported to its final destination by boat
The 3D-printed bridge was placed into position using a crane
2/5
The 3D-printed bridge was placed into position using a crane
The 3D-printed bridge is made from 6,000 kg (13,227 lb) of stainless steel
3/5
The 3D-printed bridge is made from 6,000 kg (13,227 lb) of stainless steel
The 3D-printed bridge measures 12.2 m (40 ft) in length and has a width of 6.3 m (20 ft)
4/5
The 3D-printed bridge measures 12.2 m (40 ft) in length and has a width of 6.3 m (20 ft)
The 3D-printed bridge's installation was delayed due to the canal walls needing refurbishment
5/5
The 3D-printed bridge's installation was delayed due to the canal walls needing refurbishment
View gallery - 5 images

MX3D has finally realized its ambitious plan to install what's described as the world's first 3D-printed steel bridge over a canal in Amsterdam. The Queen of the Netherlands has officially opened the bridge to the public and, as well as an eye-catching design, it features hidden sensors that are collecting data on its structural integrity, crowd behavior, and more.

The project was designed by Joris Laarman Lab, with Arup handling engineering duties, and also involved ABB, Air Liquide, ArcelorMittal, Autodesk, AMS Institute and Lenovo. The original plan was to create the bridge in place, but this turned out to be impossible due to safety issues and other concerns, so it was made in a factory.

The actual printing process only took six months and was completed in 2018, but because of unforeseen delays, including a wait while the canal walls were refurbished, the bridge was only recently transported to the site by a boat and then raised into position using a crane. It has a permit to remain in place for two years.

The 3D-printed bridge is made from 6,000 kg (13,227 lb) of stainless steel
The 3D-printed bridge is made from 6,000 kg (13,227 lb) of stainless steel

The bridge measures 12.2 m (40 ft) in length and has a width of 6.3 m (20 ft). Whereas 3D-printed concrete projects extrude a cement-like mixture out of a nozzle in layers, metal obviously handles totally differently. Therefore, creating the complex design of the bridge involved four robots welding layers of hot metal together using standard welding wire and gas. A total of 6,000 kg (13,227 lb) of stainless steel was used in all.

"Basically our M1 metal AM system is a standard welding robot and a custom set of sensors," MX3D CEO Gijs van der Velden tells New Atlas. "We developed the CAM and data management software to organize the welding process in such a way that it becomes suitable for layer by layer deposition as opposed to connecting two pieces of metal together.

"We use standard welding wires and gas. All that allows us to use a lot of the existing welding science, hence the material properties of the end parts created with our technology are excellent. As this is built on technologies already in use in most industrial companies the adoption process is easy, skills to operate are in house and operational regulations are identical to those that apply to welding."

The 3D-printed bridge was placed into position using a crane
The 3D-printed bridge was placed into position using a crane

The series of sensors installed on the bridge are being used to collect structural measurements concerning strain, rotation, load, displacement, and vibration, while also reading data on environmental factors like air quality and temperature as locals and visitors make use of the crossing in Amsterdam's bustling Red Light District.

All this data are being fed into an exact computer model of the bridge (called a digital twin) to help engineers monitor its structural status in real time. The data will also be used to "teach" the bridge to count how many people are crossing it and how quickly, and more.

It's not so long ago that robotically fabricating a metal bridge with such complex shapes would have seemed like science fiction, but such is the extraordinary rate of progress in the 3D printing architecture scene, with other notable strides including affordable housing and luxury homes.

Source: MX3D

View gallery - 5 images
10 comments
10 comments
David F
Impressive 3D-printed structure. However, its art nouveau styling would be more at home in eclectic Rotterdam because imho there is one thing about it that spoils its placement in Amsterdam: It blocks the view along the canal; the local vernacular has open railings that don't cause any visual obstruction.
guzmanchinky
We shall be there in September (if covid doesn't kill our trip!) and I look forward to seeing this. Looks a bit too modern for the surroundings, though? Maybe it looks better in person...
Nelson Hyde Chick
The bridge looks like something you would see in a science fiction movie, an insect world.
Gregg Eshelman
Since it's collecting load data, people should jump up and down on it to give them some nice shock load information.
HoppyHopkins
At this rate, they will be 3D printing Cars, Tanks and Ships instead of normal methods. And as the technology improves, we can have printers at our homes to make everything we need or want. Of course, a lot of manufacturers of durable goods will hae severely downsized becoming 3D printer computer file makers
charles02
It's hard to imagine a more energy-intensive manufacturing process than welding up a large structure out of wire.
Mato R
What were the costs of building the bridge?
Alexander More
Not exactly beautiful, is it? And it looks quite incongruous in that setting.
Miro
Blinded by science.
Bob Stuart
Large welded structures usually have a lot of trouble with cooling contraction. How was that addressed? What possible advantage is there to printing this, besides raising the price for the builder's benefit? The beauty of bridges has always derived from the structure illustrating the forces it is resisting. This just looks like a useless sculpture.