The heat given off by electronics, automobile engines, factories and other sources is a potentially huge source of energy, and various technologies are being developed in order to capture that heat, and then convert it into electricity. Thanks to an alloy that was recently developed at the University of Minnesota, however, a step in that process could be saved - the new material is able to convert heat directly into electricity.
The multiferroic alloy, with the catchy name Ni45Co5Mn40Sn10, was created by combining its various elements at the atomic level. Multiferroic materials are known for having unique elastic, magnetic and electric properties, and in the case of this alloy, that takes a form of an usual phase change. When heated, the non-magnetic solid material suddenly becomes a strongly magnetic solid.
In a lab test, upon becoming magnetic, the material absorbed heat in its environment and proceeded to produce electricity in an attached coil. Although some of the heat energy is lost in a process known as hysteresis, the U Minnesota researchers have developed a method of minimizing that energy loss.
"This research is very promising because it presents an entirely new method for energy conversion that's never been done before," said aerospace engineering and mechanics professor Richard James, who led the research team. "It's also the ultimate 'green' way to create electricity because it uses waste heat to create electricity with no carbon dioxide."
The research was recently published in the journal Advanced Energy Materials.