The proliferation of drones for a multitude of tasks has led to improved autonomy, and reduced the level of human intervention. On the flip side, however, people are still needed to physically wrangle drones to a site whenever they are required, and much time and expense is spent deploying them. To help reduce this burden, the new Dronebox nesting platform has been created to provide 24/7 autonomous capabilities to drones. It provides an automated recharging and storage station that can be left on site so a dedicated Unmanned Aerial Vehicle (UAV) can be deployed on-call or routinely for many months at a time.

Touted by the makers as an all-inclusive, self-powered system that can be deployed anywhere, the Dronebox designed as a UAV solution to follow on from the likes of remote monitors and camera systems used today. As such, the creators envisage the replacement of these fixed monitoring methods with deploy-on-demand or programmed-cycle UAVs to provide a more flexible and intuitive way to keep an eye on things.

With batteries automatically charged within its shelter system using solar panels, the Dronebox can also be upgraded using a product known as Remobox to provide a small back-up fuel cell system to extend remote deployment for a year or more. The Remobox also provides add-on communications features and environmental monitoring to ensure a nested drone is operating in optimal conditions.

Dronebox also provides the ability to link drones and Droneboxes in a similar fashion to the Internet of Things (IoT), where varied and disparate devices are interconnected to collect and exchange data. In this way, arrays of wirelessly linked Droneboxes and their associated UAVs operate through a central hub, where all of their sensors are channeled through a unified analytics system to create what the makers call a "sensor fabric" that provides real-time, overall situational awareness of everything under surveillance.

As a connected network, Dronebox's effectiveness using collaborative technologies means that a UAV nested and deployed automatically could also offer a line of first response in forest fires, chemical spills, earthquakes, and other disasters before humans arrive. With multiple sets of drones monitoring all aspects of a catastrophe via the previously mentioned sensor fabric, the situation could be assessed and actions planned and resourced well ahead of any response, thereby saving what could amount to many critical hours of time on the ground for rescue teams, firefighters, and disaster recovery personnel.

The creators of Dronebox also believe that mobile sensors hosted in networked Droneboxes could help transform border and perimeter security, wildlife protection, critical infrastructure maintenance, telecommunications tower and wind turbine maintenance, oil and gas asset inspection, and precision agriculture.

On display for the first time at the Singapore Air Show this month, Droneboxes, Remoboxes, and their supporting technologies are slated for launch in the commercial marketplace some time within the next six months.

The video below shows the Dronebox in action.

Source: H3 Dynamics

View gallery - 6 images