Energy

Upcycling technique turns plastic bottles into supercapacitor material

Upcycling technique turns plastic bottles into supercapacitor material
Scientists at the University of California, Riverside have come up with a new technique to turn plastic bottles into a material for supercapacitors
Scientists at the University of California, Riverside have come up with a new technique to turn plastic bottles into a material for supercapacitors
View 2 Images
A scanning electron microscope image of the new supercapacitor material made from upcycled plastic bottles
1/2
A scanning electron microscope image of the new supercapacitor material made from upcycled plastic bottles
Scientists at the University of California, Riverside have come up with a new technique to turn plastic bottles into a material for supercapacitors
2/2
Scientists at the University of California, Riverside have come up with a new technique to turn plastic bottles into a material for supercapacitors

Supercapacitors hold incredible potential when it comes to energy storage, with an ability to charge and discharge almost instantly being one of their major selling points. Were key components for these next-generation devices to come from sustainable sources that would only add to the appeal, and scientists at the University of California, Riverside (UCR) are offering up this possibility in the form of a nanomaterial made from upcycled plastic waste.

The breakthrough comes from a team of engineers led by UCR’s Cengiz Ozkan, who for years has been investigating new nanoscale materials that can help make supercapacitors viable options for energy storage. Previously, Ozkan and her colleagues have made promising advances involving everything from graphene to glass bottles, but their latest discovery centers on one of the largest environmental headaches we face in plastic waste.

The team started with pieces of plastic bottles made from polyethylene terephthalate plastics, or PET. These were dissolved in a solvent and turned into microscopic fibers using a technique known as electrospinning, with the fibers then converted into carbon in a furnace.

A scanning electron microscope image of the new supercapacitor material made from upcycled plastic bottles
A scanning electron microscope image of the new supercapacitor material made from upcycled plastic bottles

The material was then mixed with a binder and conductive agent before being incorporated into a double-layer capacitor in a coin-cell-like shape. Testing of the new electrode material in this configuration showed that it functioned as a perfectly capable component of a supercapacitor.

“At UCR, we have taken the first steps toward recycling plastic waste into a rechargeable energy storage device,” says doctoral student and first author Arash Mirjalili. “We believe that this work has environmental and economic advantages and our approach can present opportunities for future research and development.”

While supercapacitors charge faster than lithium batteries, they don’t store nearly as much energy. So while they could allow for electric vehicles that charge in minutes rather than hours, or phones or laptops that do the same, there will still be a place for the energy storage architecture widely used today. But the team believes that the approach used here could be adapted to improve the performance of these lithium batteries, too.

"The upcycling of PET plastic waste for energy storage applications could be considered the holy grail for green manufacturing of electrode materials from sustainable waste sources,” says Cengiz Ozkan. “This demonstration of a new class of electrodes in the making of supercapacitors will be followed by a new generation of Li-ion batteries in the future, so stay tuned."

The research was published in the journal Energy Storage.

Source: University of California, Riverside

3 comments
3 comments
Karmudjun
I was alarmed reading the first paragraph ending in the word "Nanomaterial made from upcycled plastic waste." Thinking "Like we need more nanomaterials from PET in our environment", I kept reading and I just don't know what to say.....this is a breakthrough of sorts. Supercaps from PET plastics does help with increased recycling - but you yet again increase the carbon footprint by heating up the PET to form the next stage material. And then, if it isn't any new capacitive technology or improvement over lithium battery storage/lifespans, what good is this 'breakthrough'?

Not all science yields a marvelous panacea that cures all issues. And even when they do spur innovation (steam age/petrochemical innovation/nuclear energy production) it all comes with a price. Are these supercaps as useful as the 'brick capacitors' reported upon yesterday? Limited application, tremendous carbon footprint, etc.? Then we have a new generation of scientists who have proven an inefficient solution to PET plastic accumulation is probably non-viable in the marketplace - so how adaptable is this nanomaterial (these electrospun microfibers that become carbon after extreme heating) to more than these capacitors? Any applications other than "proof of concept"?

I enjoy your reading these journals and producing a synopsis. I'm not interested in reading this article directly, but I have no hopes for this proof of concept yielding anything more than carbon expensive capacitors that are still beat by current lithium ion technology.
JeffK
Karmudjun - I think most all of us can agree that plastic recycling into a viable product is a good thing; where I live in Montana we no longer have it available as it is a money losing proposition. But now it's not so good because of the "carbon footprint"? Maybe some decisions need to be made as to what is most important, utilizing waste plastic which is a demonstrable problem, or keeping up this Co2 is going to fry the planet nonsense. I don't have to drive far to see the majestic carving done by glaciers on solid granite; my old bones and arthritic joints would much prefer a couple degrees more warmth than a return visit by the glaciers.
Oldpal1
Hi Nick: Thanks for this encouraging article. Imagine, mining the plastic islands in the Atlantic and Pacific. Opportunity abounds if we encourage "science," even though our CIC has the notion that "science" isn't to be trusted. Incidentally, have you followed up on the Quantino fuel cell vehicle? I'm particularly interested in NanoFlow Tech and its powerplant proposal. I've tried to follow up but don't have the creds to get more information from the company. It is, I think, a vastly desirable paradigm that can put the rare earth economy into a less critical supply battle between the advanced nations.