GE Healthcare has introduced a new data acquisition technology designed to improve patient comfort by largely eliminating the horrible noise generated during an MRI scan. Conventional MRI scanners can generate noise levels in excess of 110 dBA (creating a din that sounds like a cross between a vehicle's reverse warning horn and a Star Trek phaser) but GE says its new Silent Scan MRI technology can reduce this to just above background noise levels in the exam room.
The noise that MRI scanners produce is related to changes in the magnetic field that allow the slice by slice body scan to be carried out. In recent years, industry efforts to speed up the scanning process have also resulted in louder and louder scans. The designers have attempted to dampen these noises with mufflers and baffles, achieving only limited success.
Silent Scan is achieved through two new developments. First, acoustic noise is essentially eliminated by using a new 3D scanning and reconstruction technique called Silenz. When the Silenz protocol is used in combination with GE's new high-fidelity MRI gradient and RF system electronics, the MRI scanning noise is largely eliminated at its source.
At the 2012 meeting of the Radiological Society of North America, an MRI system compatible with the Silent Scan technology was linked into a soundproof room. When the MRI system used conventional scanning methods, a staccato, stuttering racket with noise peaks up to 110 dBA was heard. However, when Silent Scan was switched on, the noise level dropped to 76 dBA, just above the background noise of the MRI electronics. This is accomplished without substantial trade-offs in scanning time or image quality, according to Richard Hausmann, president and CEO, GE Healthcare MR. The comparison is shown in this video.
Silent Scan technology has not yet obtained 510k Premarketing Notification clearance from the FDA, so it's not yet available for sale. GE is presumably hoping for a decision that Silent Scan is "substantially equivalent" to existing MRI scanners, a result that would greatly simplify the new technology's entry into the diagnostic market.
Source: GE Healthcare