A collaborative project involving ECOmove, Insero E-Mobility and Serenergy is aiming to produce a fuel cell range extender for battery electric vehicles (BEVs) that should boost the distance between charges to at least 497 miles (800 km). The first vehicle to receive the new bio-methanol-based Modular Energy Carrier concept (MECc) cells will be the QBEAK car we featured yesterday.
The air-cooled, high temperature polymer electrolyte membrane (HTPEM) power system with integrated reformer (to allow it to run on bio-methanol) has been developed by Serenergy and will be available as a basic MECc range extender with a 2.5kW fuel cell and tank, but a modular design caters for more cells/tanks to be added for greater range. The system converts bio-methanol into DC current to charge a vehicle's onboard batteries, with waste heat directed to the cabin heating/cooling system.
Incorporating the combined fuel cell/BEV technology into an electric vehicle is claimed to extend its range by at least four times that of many EVs available today and will offer drivers a tank "refuel" time of less than three minutes, similar to gasoline cars. Other reported system benefits include improved charge stability that could extend the life of an EV's batteries, and low cost rollout of fueling points (as the existing fuel distribution infrastructure could be used).
The project is being managed by Insero E-Mobility and will be first implemented in the shortly-to-be-available QBEAK electric vehicle from ECOmove. The group has also secured the backing of the Danish government in the form of financial support under the Energy Technology Development and Demonstration Program.
Sources: ECOmove, Serenergy, Insero E-Mobility
A different tactic, which would also involve removing the battery, is to place the battery in a bath of supercooled liquid to counteract the heating effect from charging the battery with a much higher voltage input than would otherwise be possible without setting the battery on fire. This way a battery fit to go 500 miles could still charge in a couple of minutes.
And considering the bio-methanol recycles CO2, it doesn't add extra CO2 into the atmosphere. Depending where you live in the world, the power source used to recharge batteries externally may not come from environmentally friendly sources (I live in a city powered by a coal-burning plant)
A bio-fuel powered fuel cell with 500 mile range and refuel time of 3 minutes (using readily available refuelling infrastructure) is far more practical than your alternative.
Why bio-methanol? Natural gas-methanol is cheaper and looks better for the environment. With the appropriate gear to route the battery's out gassing and automatically top of the battery's water from the fuel cell's exhaust and fuel cells that can eat hydrogen directly (I know a given but...) nickel-iron batteries could work well and avoid the problems of more energy dense batteries.
Why fuel cells? ICE has been historically cheaper with a much longer service life. It also can run on a variety of fuels which can come in really useful if you run out of fuel in the middle of nowhere such as between Flagstaff AZ and Albuquerque NM.
Anybody want to do and show the research and math to show which is more efficient when you include manufacturing and proper disposal.
re; Onihikage
How do you intend to establish real energy storage capability of the batteries as opposed to the specification for brand new; you would not want to pay for 5 kw hours and only get 2. Nickle-iron could reduce this to insignificance but the energy density is lousy.
Supercooled liquids are expensive and you would end up using more energy to cool the battery than to charge it.
Besides a battery that carries enough energy to move itself, four people, 100kg of luggage, and of course the car carrying the load at a reasonable speed (115kph) is at least one revolution away.
See http://www.betterplace.com
The problem with electric cars is batteries cost about 10 cents a mile, and the grid electricity costs about 4 cents a mile, total cost 14 cents per mile. That compares to $3.40/gallon gas @ 30 mpg (for an efficient car) = 11 cents per mile.