NASA's NEXT ion thruster clocks up continuous operation world record

NASA's NEXT ion thruster clock...
NASA's NEXT engine (Photo: NASA)
NASA's NEXT engine (Photo: NASA)
View 7 Images
NEXT engine undergoing test (Photo: NASA)
NEXT engine undergoing test (Photo: NASA)
Diagram showing how an ion engine works (Image: NASA)
Diagram showing how an ion engine works (Image: NASA)
Possible future space missions using ion propulsion(Image: NASA)
Possible future space missions using ion propulsion(Image: NASA)
The NEXT engine (Photo: NASA)
The NEXT engine (Photo: NASA)
The NEXT engine (Photo: NASA)
The NEXT engine (Photo: NASA)
NASA's NEXT engine (Photo: NASA)
NASA's NEXT engine (Photo: NASA)

NASA's Evolutionary Xenon Thruster (NEXT) ion engine has set a new world record by clocking up 43,000 hours of continuous operation at NASA’s Glenn Research Center’s Electric Propulsion Laboratory. The seven-kilowatt thruster is intended to propel future NASA deep space probes on missions where chemical rockets aren't a practical option.

Ion propulsion has come a long way from the 1960s when it was an engineering curiosity with a cool Star Trek name. Instead of burning fuel, an ion thruster gets its electrical power from solar panels or a nuclear power source. It uses this electricity to ionize molecules (in NEXT’s case, xenon) and then a cathode to accelerate them electrostatically. As the molecules shoot out the back of the engine, they create thrust.

Diagram showing how an ion engine works (Image: NASA)
Diagram showing how an ion engine works (Image: NASA)

That sounds simple, but the amount of thrust is tiny – about the equivalent of the weight of a coin resting on a table. Where the ion thruster has it over chemical rockets is, firstly, in terms of efficiency – ion thrusters are 10 to 12 times as fuel efficient as chemical rockets. Secondly, an ion thruster can run for a much longer period of time. Where chemical rockets burn for minutes, ion thrusters can burn for thousands of hours, which allows that tiny amount of thrust to build up into speeds needed for deep space missions.

The NEXT ion thruster is one of NASA’s latest generation of engines. With a power output of seven kilowatts, it’s over twice as powerful as the ones used aboard the unmanned Dawn space probe. Yet it is simpler in design, lighter and more efficient, and is also designed for very high endurance.

Its current record of 43,000 hours is the equivalent of nearly five years of continuous operation while consuming only 770 kg (1697.5 lbs) of xenon propellant. The NEXT engine would provide 30 million-newton-seconds of total impulse to a spacecraft. What this means in simple terms is that the NEXT engine can make a spacecraft go (eventually) very far and very fast.

Source: NASA

IMO; that sounds really cool. I think it is the future for propulsion.
Too bad it needs Xenon gas, that makes the engine unsustainable, Any other material like space rock would be better, though hard to collect in empty space, because of the speed difference.
7kw is about 7000 / 640 watts per horsepower = 10.9 horsepower that doesn't sound anything at all like the amount of power needed to support a coin on a table. Now, what kind of nuclear power will they use to run it? How much does it mass? What is it's fuel mass loss? Couldn't they use a denser, solid material instead of xenon and heat it to the useful temperature and save on storage mass/volume? Can the process be scaled up to 1000 times current power? Can any form of mass be used as long as it is heated to gas/vapor temperature? If so, then you could use solar panels when near a sun for power and then use their mass as fuel when away from the sun. Thus reducing vehicle mass at the same time.
Robert Gillis
Encouraging research and development projects continuously produce results, such as the Xenon ion thruster for future space exploration missions. Evidence of remarkable achievements continue in most all the disciplines, except in the realm of humanity's domain and condition . Billions are spent in pursuit of knowledge relevant to areas of science which currently have little to do with the human condition overall. In effect, - hanging curtains before the house is built. Agreed, - it isn't all negative, since much has been discovered which has produced beneficial knowledge applicable to the development of new discoveries in biology and medical science. However, nothing of tangibility has so far been discovered to transform human nature which will allow it to overcome the destructive influences of 'greed' and the lust to control and dominate other members of our species to a status-dominated sub-cultural state.
"What this means in simple terms is that the NEXT engine can make a spacecraft go (eventually) very far and very fast." How far? How fast?
Jess Atwell
I was under the impression that ions could be gathered in space much as rocket engines gather more combustible air to accelerate as the ion propulsion systems gather speed. Aren't ions available everywhere in space? And the only thing necessary is to gather and channel them for thrust? Or am I just such a neophyte that I believe in Star Trek too much?
Nitrozzy Seven
@ notarichman This engine is for space travel. Not take-offs or landings. And in space, where there's pretty much nothing to slow down the spacecraft, any amount of force will do. This engine is a constant, reliable and durable source of thrust, which is exactly what NASA wanted for space travel. This engine is gonna get people to Mars one day.
the only problem i have with this type of engine is it leaves no room for error in navigation. what about the plasma engine more power required but far more thrust.
Michael Gene
Better yet this engine or one like it will get us to Mars in weeks instead of months.
Mike Maxwell
@Nitrozzy: error in navigation? I don't think that's an issue. Traveling through space isn't like missing the exit ramp on the freeway, it's pretty straightforward.