Paralyzed man uses own brainwaves to walk again – no exoskeleton required

Paralyzed man uses own brainwaves to walk again – no exoskeleton required
Researchers have restored a paralyzed man's ability to walk by redirecting brain signals to his limbs
Researchers have restored a paralyzed man's ability to walk by redirecting brain signals to his limbs
View 1 Image
Researchers have restored a paralyzed man's ability to walk by redirecting brain signals to his limbs
Researchers have restored a paralyzed man's ability to walk by redirecting brain signals to his limbs

A man suffering complete paralysis in both legs has regained theability to walk again using electrical signals generated by his own brain.Unlike similar efforts that have seen paralyzed subjects walk again by usingtheir own brainwaves to manually control robotic limbs, the researchers saythis is the first time a person with complete paralysis in both legs due tospinal cord injury was able to walk again under their own power anddemonstrates the potential for noninvasive therapies to restore control overparalyzed limbs.

The subject of the research, carried out by scientists at theUniversity of California, Irvine, had been paralyzed for five years. The workbegan with a stint of mental training designed to reengage the brain's walkingability, which saw the subject don an electroencephalogram (EEG) cap (a pieceof headwear fitted with electrodes that monitor the brain's electricalimpulses). The man was first made to control an avatar in a virtualenvironment, which was then followed with physical training to build up thestrength of his leg muscles.

With a system that delivers the electrical signals from hisbrain to electrodes placed around his knees to initiate movement, he beganpractising walking in the air, suspended around 5 cm (2 in) above the ground.This allowed him to become accustomed to the walking motion without his legsactually needing to support the weight of his body. On his 20th visit, equippedwith a support system to avoid falls and take some of his body weight, hemanaged to put one foot after the other along a 3.66 m (12 ft) walking course.The researchers report that across a 19 week testing period, he developedbetter control of his limbs.

This work builds on previous research carried out at UCLA whereelectrode arrays have been used to stimulate motion in sufferers of paralysis.In 2011, its researchers managed to restorevoluntary leg movement ina paralyzed man by applying electrical signals to the spinal cord's own neuralnetwork, tapping into the sensory input from the legs rather than the brain totrigger muscle and joint movement.

And earlier this year, UCLA researchers were able to get theparalyzed legs of five men moving again by placing electrodes on the skin ofthe lower back to stimulate the nerves. Then earlier this month its scientistsadapted this technique to allow a completely paralyzed man to control a bionicexoskeleton and takethousands of steps.

But the UC Irvine scientists say this is the first time a personwith complete paralysis in both legs has been able to walk without manuallycontrolled robotic limbs.

"Even after years of paralysis the brain can still generaterobust brain waves that can be harnessed to enable basic walking," saysDr. An Do, one of the lead researchers. "We showed that you can restoreintuitive, brain-controlled walking after a complete spinal cord injury. Thisnon-invasive system for leg muscle stimulation is a promising method and is anadvance of our current brain-controlled systems that use virtual reality or arobotic exoskeleton."

Though optimistic, the scientists are urging caution, notingthat the study only involved a single patient and further work must be donebefore they can conclude whether the promising results will translate to otherswith paraplegia. They also anticipate that implants could improve user controland provide sensation.

"Once we've confirmed the usability of this noninvasivesystem, we can look into invasive means, such as brain implants," sayssenior lead researcher Dr. Zoran Nenadic. "We hope that an implant couldachieve an even greater level of prosthesis control because brain waves arerecorded with higher quality. In addition, such an implant could deliversensation back to the brain, enabling the user to feel their legs."

The team's research was published in the Journal of Neuroengineering andRehabilitation.

Source: BioMed Central

Wonderful progress. Christopher Reeve would be pleased.
This is wonderful news for paralyzed folks and their families. Maybe someday my cousin will be able to walk again.
Yes, and the next major level of experimentation and development would be to perfect matching up the external hardware & software to both sides of the damaged spinal cord while providing the necessary cells & chemical signals to prompt regeneration of the damaged area. Just a few years ago this would have seemed totally far off, now it appears to be achievable and maybe not that far off. Very Good!
Neil Farbstein
WOW, that took real insight to think of that treatment.
Stephen N Russell
Test at nationwide VA centers alone & hospital chains IE Kaiser Perm. & USC Medical centers in CA. & others. Lisc., mass produce exo suit alone.
I think we are attempting too great an achievement at once.
Start like a child learning to walk. Start by practicing crawling on your stomach with leg motion; then walking on all fours; and finally, getting up and waling on two legs.
At each stage, muscles are being trained to get to the final stage which is walking steadily on two legs.
As with any learning process, start at the basics and work your way up.
incredible discovery , Yet oddly enough in 110 years and counting medical science can't seem to come to grips with dealing with induced ptsd tinnitus via ionizing conductive dental mercury amalgam or some of the 1st concept theories of coming to the add of man by man made things to either help or manipulated man. The latter being more of concern one would think in light of the seemingly concern that was the Allies of world war 2 for Hitler seen and or forgotten in the sentiment of suggestion of concerns likes signal corps training cartoons such the likes of Private SNAFU Booby Traps 1944 or as back ground of books and or movies like C.S. Lewis Screw tapes letters and to the battle of the silver chair or sentient of concern of old worm wood. I wunder why ...
That's terrific! But a brain implant? Remember those remotely operated birth control implants developed by Bill Gates, Inc.?