February 18, 2009 Think of the electromagnetic railgun as an electric cannon which uses electrical energy instead of chemical propellant to launch projectiles at hypervelocities. First conceived nearly a century ago, the concept was investigated by Germany during WWII, but has really only stepped out of science fiction and into reality in the last 12 months. With shells travelling at Mach 5 on impact, and accurate to within five metres at a 200 mile range, such weapons maximize the damage they do through kinetic energy, and hence don't need explosive payloads. Accordingly, they are ideal for naval warfare as they minimise the risk to warships which do not need to carry explosive warheads or propellants. Earlier this week, the US Office of Naval Research (ONR) awarded a USD 21 million 30-month contract to BAE Systems for the detailed design and delivery of an Innovative Naval Prototype (INP) Railgun. As previously warned, if the Daleks don't get here soon, they'll have a serious fight on their hands.
Under the contract, BAE Systems will develop advanced Railgun technologies including a composite launcher (barrel) that will be demonstrated in 2011. BAE Systems has partnered with IAP Research, and SAIC to develop the Railgun.
One of the greatest potential advantages for the Railgun program is the safety and logistics aspect.Safety on board ship is increased because no explosives are required to fire the projectile and no explosive rounds are stored in the ship’s magazine.
The technology uses high-power electromagnetic energy instead of explosive chemical propellants (energetics) to propel a projectile farther and faster than any preceding gun. At full capability, the rail gun will be able to fire a projectile more than 200 nautical miles at a muzzle velocity of mach seven and impacting its target at mach five. In contrast, the current Navy gun, MK 45 five-inch gun, has a range of about 13 miles.
thanks, poidog
Rather than focusing on just the weaponry aspect, perhaps outlining some of the more peaceful aspect would be good. Could this be used for launching satellites, etc.?
Using electromagnetic launchers for space applications is truly still an idea for science fiction. You have to realize that an enormous amount of energy is used to launch a projectile that is maybe 30kg. To launch a satellite into earth orbit would require a massive energy source. That said, you scale up a electromagnetic launcher, put it on the surface of the moon, and then you could potentially launch payloads to Mars (still science fiction of course). BUT, also note that the accelerations that the projectiles (and payloads of the future) are subjected to on launch are extremely large and could cause damage to the contents.
However, pure magnetic acceleration to launch a satellite isn't very feasible. MAP designs to launch satellites use magnetic acceleration to build up centrifugal force inside a spiral track.
So, as far as a rail gun goes, orbital launch isn't something that will be explored soon.
"The flames are from pieces of the projectile disintegrating; the 7-pound slug is jammed so firmly between the rails that when it's fired, pieces shear off and ignite in the air."
http://www.popsci.com/military-aviation-space/article/2008-02/navy-tests-32-megajoule-railgun
And you would not combine a rocket with an electromagnetic launch. The whole concept of using EM launchers for space launch is to remove the rockets from the equation. And saying that the payload is connected to, but separate from the payload is like saying that the shuttle is separate from the main booster. But yes, you could feasibly design a EM shielding for the payload. The accelerations are the issue. That and the enormous amount of current required to produce enough of a Lorentz force to move a payload the size of a satellite.
And launch from a 14,000 ft mountain. Seriously? 400 miles = 2,112,000 ft. 28,000 miles = 147,840,000 ft. You really think launching from a mountain would help?