Energy

Scientists build first redox flow battery made of all-organic materials

Scientists build first redox f...
Mikhail Vagin, principal research engineer and PhD student Penghui Ding, in the lab at Linköping University
Mikhail Vagin, principal research engineer and PhD student Penghui Ding, in the lab at Linköping University
View 2 Images
Mikhail Vagin, principal research engineer and PhD student Penghui Ding, in the lab at Linköping University
1/2
Mikhail Vagin, principal research engineer and PhD student Penghui Ding, in the lab at Linköping University
A model of the first organic redox flow battery
2/2
A model of the first organic redox flow battery

As a storage solution for renewable energy, scientists see great potential in what are known as redox flow batteries, which hold energy in large tanks rather than compact electrode materials. A new design from Sweden’s Linköping University is a decidedly green version of this technology, swapping out scarce metals and synthetic polymers for all-natural materials.

The reason redox flow batteries are such a promising alternative to lithium-ion batteries when it comes to the intermittent nature of renewable energy is because they can store vast amounts of energy at relatively low cost. While lithium-ion batteries store energy in their electrodes and the capacity is therefore limited by the size of the device, redox flow batteries can store energy in liquid electrolytes housed in huge external tanks for months at a time.

Something that doesn’t help the eco-credentials of redox flow batteries, however, is their use of a scarce and expensive metal known as vanadium. This metal is the basis of the electrolyte solution and offers great reliability during charging and discharging, but some researchers see a greener alternative in water-based electrolytes, including the team behind the world’s largest redox flow battery in Germany.

Another area with room for improvement is the electrodes of redox flow batteries, which are typically made from a synthetic polymer called carbonized polyacrylonitrile. We’ve seen some inventive approaches to producing these components in more sustainable ways, including an MIT study that aims to craft them from ingredients in shrimp shells, but now the Linköping University team is putting forward another solution while solving the electrolyte issue at the same time, producing what it bills as the first all-organic redox flow battery.

The team’s redox flow battery features electrodes made from PEDOT, which is an organic and conducing polymer we’ve also seen used in advanced lithium-ion battery designs, and even “smart bricks” that store energy. The engineers doped their PEDOT polymer to enable it to transport the battery's positive and negative ions, and work nicely with a water-based electrolyte laden with quinone molecules, which occur naturally in forest-based materials.

A model of the first organic redox flow battery
A model of the first organic redox flow battery

“Quinones can be derived from wood, but here we have used the same molecule, together with different variants of the conducting polymer PEDOT,” says study author Viktor Gueskine. “It turns out that they are highly compatible with each other, which is like a gift from the natural world.”

The team found that the PEDOT electrodes and quinone-based electrolytes worked together to promote the flow of protons and electrons in the battery, though note the design doesn’t offer as much energy density as versions containing vanadium. On the plus side, they claim their device is very cheap, entirely recyclable and perfectly safe, opening up the possibility of installing such a battery in homes to act as a power bank for electric vehicles.

"Since both electrode, membrane and reactants are organic‐based, we can truly claim the first “all‐organic” redox flow batteries," the scientists write in their study, which was published in the journal Advanced Functional Materials.

Source: Linköping University

3 comments
Karmudjun
Ah - this sounds like a much better use of the technology than the bricks! Still, if all these breakthroughs can be scaled up at a reasonable price point, the use of these batteries and battery technologies would skyrocket allowing more consumers to enjoy the benefits of renewable power consumption. I wish I could see this in my lifetime, but I can't imagine it being economical or feasible in my next 60 years.....
philouze
sorry, but it's not the first full organic redox battery, another one is even on the market :
https://kemiwatt.com/
Peter Ross
As I am currently looking at installing 3x10kwh LiFePO4 power walls at a holiday home, can anyone suggest a cost plus a timeframe when these organic units will be commercially available? I like the concept but don't want to wait 4 or 5yrs as the current lead acid units we're using are nearing the end of their effective life.


.