Synthetic crop fertilizers are a huge source of pollution. This is particularly true when they’re washed from fields (or leach out of them) and enter our waterways. Unfortunately, most commercial crops need the fertilizer, because it provides the nitrogen that they require to survive. Now, however, a scientist at the University of Nottingham has developed what he claims is an environmentally-friendly process, that allows virtually any type of plant to obtain naturally-occurring nitrogen directly from the atmosphere.
There are only a few types of plants (mainly legumes like soybeans and peas) that are able to obtain – or “fix” – nitrogen from the air. They are able to do so with the help of symbiotic nitrogen-fixing bacteria. Those bacteria help the plant get nitrogen, and in turn feed on the naturally occurring plant sugars. Most other plants have to get their nitrogen from the soil, and when you have a lot of plants growing close together, you need to augment that soil’s nitrogen content with fertilizer.
Nitrogen-fixing bacteria do occur in some varieties of Brazilian sugarcane (a non-legume plant), which is the reason that those varieties are known for producing high yields with the addition of only small amounts of synthetic nitrogen fertilizer. Nottingham’s Prof. Edward Cocking discovered that one strain of that bacteria could colonize all major crop plants, at a cellular level.
The process that Cocking developed, based on his discovery, is known as N-Fix. It involves covering seeds in a non-toxic coating that contains the bacterium. As a seed sprouts and the plant grows, the bacterium enters through its roots, and ultimately ends up in every cell of the plant. This means that every one of those cells is capable of fixing nitrogen from the atmosphere – just like sugarcane does.
N-Fix has been undergoing lab and field tests for the past 10 years, and has now been licensed to Azotic Technologies for further development and commercial production. According to the company, the bacteria should replace about 60 percent of plant nitrogen needs. It is hoped that the technology will be available for worldwide use within two to three years.
“Helping plants to naturally obtain the nitrogen they need is a key aspect of World Food Security,” says Cocking. “The world needs to unhook itself from its ever increasing reliance on synthetic nitrogen fertilizers produced from fossil fuels with its high economic costs, its pollution of the environment and its high energy costs.”
Source: University of Nottingham
But as long as we have to soak the seed and the plant's subsequent generations don't retain the bacteria, things should be great...we don't really grow that much vegetation.
Does lead one to wonder why more plants are not doing this already. I hope there is not a good reason. I also wonder if it will accelerate spoilage as bacteria are part of that equation.
This does sound fantastic though.
Now to find a solution for phosphate fertilizers...
SLOWBURN: While this process avoids needing to engineer the plants, it also opens possibility for cross contamination. Though it does seem a negligible worry, in my opinion, as the seed must be inoculated for the plant to achieve the symbiosis. Any reduction in field fertilization is an environmental bonus, and a hopeful way to combat ocean dead zones caused by fertilizer runoff.
I have seen the results of too many well intentioned specie introductions to think that this time it will go as planned.
Wave harvesting machines that splash water around aerate the water which will fix the nutrient caused ocean dead zones. For steams and rivers use under shot waterwheels and you can generate electricity at the same time as you aerate.
Also, wave harvesting machines (of which very have been installed) splashing around and causing ocean dead zones? If that were true the splashing around that naturally occurring ocean waves create would have dead zones almost everywhere, not just where fertiliser runoff has created algal or cyanobacterial blooms that deoxygenate the water and kill everything...