Energy

Can crowdfunding give us safe fusion power by 2020?

View 7 Images
A group of scientists are turning to Indiegogo to fund fusion power research (Image: LPP Fusion)
The team led by Eric Lerner is attempting to achieve nuclear fusion using an innovative, low-cost approach (Image: LPP Fusion)
The focus fusion approach harnesses plasma instabilities rather than fighting them (Image: LPP Fusion)
The final reactor would harvest electricity directly, for better efficiency and vastly reduced costs (Image: LPP Fusion)
Natural instabilities briefly concentrate plasma into a donut-shaped plasmoid (Image: LPP Fusion)
A strong current pulse generates plasma between the anode and the cathode of the plasma focus device (Image: LPP Fusion)
The plasma focus device can be quite small in size (Image: LPP Fusion)
A group of scientists are turning to Indiegogo to fund fusion power research (Image: LPP Fusion)
View gallery - 7 images

A group of researchers at New Jersey-based LPP Fusion is turning to crowdfunding to demonstrate net power gain from a nuclear fusion reactor. The scientists plan to do this using a technique which is relatively little-known, but which they claim is scientifically sound and only relies on well-established science. Given enough funding, the researchers say they could design a US$500,000, 5 MW reactor that would produce energy for as little as 0.06 cents per kWh, all by the end of the decade.

You'd be excused for doubting that research into fusion power could successfully be crowd-funded. ITER's tokamak, which is being built in the south of France, is requiring a collaboration of seven countries and has seen several delays, with costs now expected to exceed the €10 billion (US$13.7 billion) mark. Barring further difficulties, the ITER project is slated to begin operations in 2027 at the earliest.

The team led by Eric Lerner is attempting to achieve nuclear fusion using an innovative, low-cost approach (Image: LPP Fusion)

According to LPP Fusion chief scientist Eric Lerner, the vast majority of the financial resources have been allocated to ITER's approach to fusion power, while other avenues, such as the one being pursued by his team, have been largely neglected, despite being much cheaper. Using an approach he calls "focus fusion," Lerner says his team can obtain a crucial electrode for $200,000, demonstrate net power gain with $1 million, and solve the final engineering problems, leading to a functioning fusion reactor with just $50 million in funding.

How it works

In a standard nuclear fusion approach, the idea is to capture the plasma and make it stable, which is technically extremely challenging (and expensive). The Focus Fusion approach is not to fight those instabilities, but to instead harness them to concentrate the plasma in a very small area.

The plasma focus device can be quite small in size (Image: LPP Fusion)

The plasma focus device, the heart of the fusion reactor, can be as small as just a few inches in diameter (see above). The device consists of a central hollow cylinder made out of copper, the anode, surrounded by an insulator (in white), and an outer electrode, the cathode, a circle of copper rods. The device is enclosed in a vacuum chamber filled with the fusion fuel and attached to a powerful capacitor bank.

A strong current pulse generates plasma between the anode and the cathode of the plasma focus device (Image: LPP Fusion)

In only a microsecond, the capacitor bank pulses a current of over a million amps from the cathode to the anode. This ionizes the gas, turning it into a plasma. At this point, parallel currents run along each other inside the plasma, generating a magnetic field that forces dense plasma filaments to attract and twist around each other, concentrating the plasma over a small area.

The magnetic fields focus the plasma filaments into a donut-shape plasmoid that is only millimeters across and quickly compressing. When the plasmoid gets dense enough, radiation from the center of the plasmoid starts to escape, and that causes a sudden fall in the magnetic field, accelerating a beam of electrons on one end and a beam of ions on the other end. As they leave, the electrons in the beam interact with the electrons in the plasmoid and heat up the area to over 1.8 billion degrees Celsius, which is enough to get fusion reactions.

Natural instabilities briefly concentrate plasma into a donut-shaped plasmoid (Image: LPP Fusion)

The record temperatures achieved in this way are hot enough for fusing a boron and a hydrogen atom briefly into a carbon nucleus, which immediately breaks apart into three helium atoms and a large amount of energy. Unlike the deuterium and tritium used in other approaches, this reaction is aneutronic, which means the end product is charged particles, and no dangerous radioactive waste. In fact, the end products have a half-life just over 20 minutes, meaning that radiation inside the reactor will be back to background levels after only nine hours.

Moreover, because the end product of the reaction is moving charged particles, those can be converted into electricity directly, which is both more efficient and, according to the researchers, up to 10 times more cost-effective.

The final reactor would harvest electricity directly, for better efficiency and vastly reduced costs (Image: LPP Fusion)

Electricity would be generated in two ways. A good 60 percent would come from the ion beam shooting out of the plasmoid, which would be fed to a metal coil, where the rapidly changing electromagnetic fields would generate a current which is then fed into a capacitor with 80 percent efficiency.

The remaining 40 percent of the electricity would be harvested from the x-ray pulse generated by the reaction, which would be collected by a stack of thousands of extremely thin metal foils that will capture electrons into a fine electric grid.

The impact

A full-sized focus fusion reactor, says Lerner, would cost $500,000, which is much cheaper than a standard nuclear reactor, and would be safe and small enough to fit in a garage or a shipping container. It would provide 5 MW of power, which is enough for about 3,500 homes, for as cheap as 0.06 cents per kWh – a twenty-fold improvement over current costs.

With 20 percent of the world's population having no access to electricity, this technique has the potential to offer cheap, clean and decentralized energy that could be deployed even to remote areas.

According to NASA's Jet Propulsion Lab, which financed part of Focus Fusion's research, a functioning reactor could also double as a rocket engine, allowing us to reach Mars in as little as two weeks. Currently, rockets take six months for the trip in the best-case scenario.

The next step

Lerner and colleagues say they have already achieved two out of the three conditions they need to demonstrate a net energy gain: they have heated the plasma to 1.8 billion degrees and confined it to a tiny area for tens of nanoseconds. The third, remaining condition is to achieve a plasma density 10,000 times higher.

The researchers say they know how to do it, and that they could achieve it by using higher-quality beryllium electrodes, employing heavier gases, and switching from deuterium-tritium to hydrogen-boron as fuel.

If the researchers can raise $200,000 for beryllium electrodes, they say they will be able to show that a commercial fusion reactor is feasible and ready for commercial application by the year 2016. By then, it would be much easier to secure the $50 million needed to solve the remaining engineering problems and build a prototype reactor over the following three or four years.

You can find out more on the Indiegogo campaign set up by the researchers. The video below illustrates how the reactor would be able to harness plasma instabilities to generate energy fusion energy.

Source: Focus Fusion

View gallery - 7 images
  • Facebook
  • Twitter
  • Flipboard
  • LinkedIn
37 comments
thk
If the concept is sound, they would not have any problem sourcing US$500,000 from even a fairly large private company or any decent government.
SamB
I second what thk said. If all they are after is $500k, there are plenty of investors out there who would be all over this. I suspect that it is not as simple as buying the electrodes they are after to demonstrate their prototype as described in the article. Don't get me wrong, it would be fantastic if these guys were idealists (in not wanting to lose control of their ip) and didn't want 'the man' to suppress their amazing discovery. Having been heavily involved in R&D funding I would say in the right hands they would have access to so much more than even the $50M they aspire to IF they could even do something so simple as putting together a straightforward development pathway with clearly identified expenditure and milestones.
EddieG
Mobil Oil (or any private industry) isn't going to give us fusion. DARPA isn't either. What can it hurt to try croudsourcing?
VirtualGathis
I'll have to disagree with SamB and thk. Investors shy away from fusion projects thanks to projects like the failed tokamak research where billions have been invested with near zero results for half a century.
Government funding is based on laziness. If the energy research team is given $15B they prefer to fund one big ITER style project rather that 1000 or so LPP Focus fusion or IEC projects.
So unless these guys bring an investor a 100% comercialized reactor they are unlikely to recieve funding from so called "certified investors".
lwesson
When Nikola Tesla allowed that humanity could have access to free, unfettered energy, Mister Westinghouse quickly nixed this. Electricity = Money. This concept has not magically gone away. The infrastructure for energy is well matured. There is much invested in the current --pun-- set up, countless jobs depend on it staying much as it is now.
Rest assured that a sudden cheap energy development would gain the attention of those who either work in this HUGE field, and those that profit greatly from the status quo.
That said, it is a guess that the most interested party to this development will be entities like The Military. If you look at upcoming weapon systems, you see a kind of Star Wars, Trek type weapon platforms that use a huge amount of energy. I could easily see this being used on an aircraft carrier, or cruiser... and for anti ballistic missile defense in the air or on the ground.
Mister Westinghouse has never really, "Left the room." Eventually however, this "Genie" will get out of the bottle, just don't hold your breath.
Mr E
Good luck to them.
Kip Siegle had the concept back in the early 70's of building small local power plants. He had sold all of the businesses he owned and dumped every cent into KMS Fusion. He truly believed that this would be our energy salvation.
When he died in 1975 he was spending all his time getting additional funding to keep the effort going.
At that time KMS felt they were getting really close and that it would only be a few years to get to fruition. And so the dream continues.
CaptD
Think of this a "Nuclear Make Work" project that will keep these scientists busy for a while trying to get enough data to interest yet more R&D money to be spent trig to make Nuclear pitiable to the masses!
Solar (of all flavors):
... Is faster to install,
... Costs less to install
... Is ready for 24/7 power with storage
... Requires no decommissioning costs that takes decades
... And has no Nuclear RISK...
susangrahamLA
I too was skeptical at first but I think this is a compelling idea - crowdfunding has been at the forefront of every industry so why not energy? Especially with so much corruption in the corridors of investment/government/finance etc. There are publications listed on the campaign that look pretty good to me (admittedly not a scientist, just an enthusiast). Worth my $50 or $100 anyday.
lilbit22657
cool idea. worth investment. makes sense that government isn't into it - they waste money haha
Snatr
I'd have to say I'm with CaptD. Maybe they can use those thousand tiny x-ray collecting foils to somehow capture the sun's energy during cloudy conditions.