Materials

Recycling tech actually improves on PET plastic

Samples of the fiber-reinforced reclaimed PET that were produced using the new technique
Dennis Schroeder / NREL
Samples of the fiber-reinforced reclaimed PET that were produced using the new technique
Dennis Schroeder / NREL

Lightweight and shatterproof, polyethylene terephthalate (PET) plastic is recyclable, although most items made from it don't get recycled. This is because reclaimed PET (rPET) just isn't as good as the original material. A new "upcycling" process, however, is claimed to make it even better.

Developed by scientists at the US Department of Energy's National Renewable Energy Laboratory (NREL), the technique involves first melting down discarded PET items such as bottles, then adding organic fibers obtained from plant waste. The ultimate end products are two types of fiber-reinforced rPET, which are said to be two to three times stronger and more durable than the original.

Additionally, it is estimated that the NREL technique will require 57 percent less energy than existing PET-reclamation processes, and that it will produce 40 percent fewer greenhouse gas emissions than standard petroleum-based composites manufacturing.

Although it's currently not possible to recycle the new types of rPET, the researchers are looking into methods of doing so. Existing first-generation PET can only be recycled once or twice, and as mentioned earlier, standard recycling techniques result in a material that is inferior in quality to the original.

"Standard PET recycling today is essentially 'downcycling,'" says Gregg Beckham, senior author of a paper on the study. "The process we came up with is a way to 'upcycle' PET into long-lifetime, high-value composite materials like those that would be used in car parts, wind turbine blades, surfboards, or snowboards."

The paper was recently published in the journal Joule.

Source: Cell Press via EurekAlert

Lightweight and shatterproof, polyethylene terephthalate (PET) plastic is recyclable, although most items made from it don't get recycled. This is because reclaimed PET (rPET) just isn't as good as the original material. A new "upcycling" process, however, is claimed to make it even better.

Developed by scientists at the US Department of Energy's National Renewable Energy Laboratory (NREL), the technique involves first melting down discarded PET items such as bottles, then adding organic fibers obtained from plant waste. The ultimate end products are two types of fiber-reinforced rPET, which are said to be two to three times stronger and more durable than the original.

Additionally, it is estimated that the NREL technique will require 57 percent less energy than existing PET-reclamation processes, and that it will produce 40 percent fewer greenhouse gas emissions than standard petroleum-based composites manufacturing.

Although it's currently not possible to recycle the new types of rPET, the researchers are looking into methods of doing so. Existing first-generation PET can only be recycled once or twice, and as mentioned earlier, standard recycling techniques result in a material that is inferior in quality to the original.

"Standard PET recycling today is essentially 'downcycling,'" says Gregg Beckham, senior author of a paper on the study. "The process we came up with is a way to 'upcycle' PET into long-lifetime, high-value composite materials like those that would be used in car parts, wind turbine blades, surfboards, or snowboards."

The paper was recently published in the journal Joule.

Source: Cell Press via EurekAlert

  • Facebook
  • Twitter
  • Flipboard
  • LinkedIn
3 comments
MQ
At the end of all polymer's life cycle there is still the ultimate downcycling available, energy recovery through thermal decomposition.
It all has energy locked into its polymer. Burning for energy recovery eliminates "80-90%" of the landfill requirement for raw end of life waste.
jerryd
Sorry but someone is lying here. The fiberglass used is not organic, it is processed sand. Nor does the plastic in the pic penetrate the FG by any amount, much less wet it out needed to most strength. So not 20% of the strength of a fully wet out FG. Fact is without fiber reinforcement PT is stronger than most anything. Melt so to 1/4" thick and try to hurt it if you don't believe. And be careful not to hurt yourself trying. You could build things like cars, etc it is so strong. They already did 20 yrs ago. Melt it into sheets, extrude it to make buildings, etc. The possibilities are endless.
ljaques
Jerry, the verbiage was "then adding organic fibers obtained from plant waste." rather than fiberglass. Fiber-reinforced, not fiberglass-reinforced.
Low-energy recycling sounds great, especially when the end-product is more recyclable than the original.
Burning a recyclable product is kinda antithetical, wot?