Science

Fermilab experiment will attempt to answer whether we actually live in "the Matrix"

Fermilab experiment will attempt to answer whether we actually live in "the Matrix"
Scientists will attempt to discover if the universe is "real" or a holographic 3-D illusion (Photo: Fermilab)
Scientists will attempt to discover if the universe is "real" or a holographic 3-D illusion (Photo: Fermilab)
View 5 Images
Scientists will attempt to discover if the universe is "real" or a holographic 3-D illusion (Photo: Fermilab)
1/5
Scientists will attempt to discover if the universe is "real" or a holographic 3-D illusion (Photo: Fermilab)
Fermilabe scientists and their Holometer device (Photo: Fermilab)
2/5
Fermilabe scientists and their Holometer device (Photo: Fermilab)
The Fermilab Holometer will look for quantum jitter (Photo: Fermilab)
3/5
The Fermilab Holometer will look for quantum jitter (Photo: Fermilab)
Researchers at Fermilab have designed and built what they call a "Holometer" (Photo: Fermilab)
4/5
Researchers at Fermilab have designed and built what they call a "Holometer" (Photo: Fermilab)
The principle of operation of the Fermilab Holometer (Image: Fermilab)
5/5
The principle of operation of the Fermilab Holometer (Image: Fermilab)
View gallery - 5 images

In what may be one of the most mind-bogglingly surreal experiments ever floated, scientists at the US Department of Energy's Fermi National Accelerator Laboratory (Fermilab) will attempt to discover if the universe is "real" or merely a holographic 3-D illusion that we just think is real. Using high-powered lasers, the scientists intend to determine if space-time is a quantum system made up of countless tiny bits of information.

In explaining their theory, the scientists involved make much of the analogy that, if you stand near enough to a TV screen, you will be able to see the individual pixels that, as you move away, image resolves into a whole image with the individual pixels no longer distinguishable as separate points of light.

So, the scientists propose that if the characters displayed on a TV screen don't know that their apparent 3-D world exists only on a 2-D screen, we too could also be ignorant to the possibility that our 3-D space is also just an illusion. As such, the Fermilab scientists believe that the information about everything contained in our universe may somehow be embedded in tiny packets of information in two dimensions.

The scientists further premise that this information is contained in a "pixel size" container approximately 10 trillion, trillion times smaller than an atom, (a dimension of size that physicists call the Planck scale). At this sub-atomic scale, standard physics no longer holds much sway and quantum theory dictates the rules. As such, it is not possible – in accordance with Heisenberg’s uncertainty principle – to know both the precise location and the exact speed of subatomic particles at the same time.

As a result, his phenomenon ensures that matter continues to jitter as quantum waves even when cooled to absolute zero. If the digitized space proposed by the researchers continues to vibrate even in its lowest energy state, they believe that their theory may be proved correct.

To attempt to test this premise, the Fermilab researchers have designed and built what they call a "Holometer" – or holographic interferometer – to see if the characteristic quantum jitter that exists in matter is also found in empty space.

"We want to find out whether space-time is a quantum system just like matter is," says Craig Hogan, developer of the holographic noise theory and a director at Fermilab. "If we see something, it will completely change ideas about space we’ve used for thousands of years."

Recently commissioned and now operating at full power, the Holometer uses a pair of interferometers (devices that superimpose one laser beam over another to look for anomalies in intensity or phase to test an external influence) located next to each other. Each interferometer directs a one-kilowatt laser beam at a beam splitter and then down two 40-m (130-ft) arms located at right-angles to one another.

The laser beams are then reflected and returned to the beam splitter and the two beams are recombined; if there is any motion detected, fluctuations in the brightness of the combined beam will result. Researchers will then analyze these fluctuations to see if the beam is being influenced by the jitter of space itself.

One major difficulty in such a test will be noise – "Holographic noise", the researchers call it – which they expect to be present at all frequencies. To mitigate this, the Holometer is testing at frequencies of many megahertz so that motions contained in normal matter are claimed not to be a problem. The dominant background noise of radio wave interference will be the most difficult to filter out, according to the team.

"If we find a noise we can’t get rid of, we might be detecting something fundamental about nature – a noise that is intrinsic to space-time," said Fermilab physicist Aaron Chou. "It’s an exciting moment for physics. A positive result will open a whole new avenue of questioning about how space works."

The Holometer team is made up of 21 scientists and students from Fermilab, MIT, the University of Chicago and the University of Michigan, with the experiment set to gather data over the coming year.

Source: Fermilab

View gallery - 5 images
17 comments
17 comments
ChairmanLMAO
Hay can I use that holometer to watch my paint dry? Now that would be really exciting..
Ben O'Brien
But if it's something like the matrix then some agents will change the results subtly and make it seem like your not in the "matrix". Thus somebody should prank them by showing up dressed like agents or neo or morpheus.
It sounds like they aren't testing if we are in a machine run matrix but instead looking at some fundamental aspects of space time fabric to me.
Mel Tisdale
So, if it proves that we really do live in a matrix, what can we do about it?
Mind you, it would go a long way towards explaining collateralised debt obligations and other derivatives so loved by the banking community.
There U Are
Perhaps They would start by explaining how they determined that characters on TV "know" they are real.
edro3111
Please tell me these geeks aren't using taxpayer money in any way to do this study!
Lbrewer42
" If the digitized space proposed by the researchers continues to vibrate even in its lowest energy state, they believe that their theory may be proved correct."
How very little it takes in order for someone to "prove" something nowadays is an affront to actual science. The reality of the situation is that their findings may LEND SUPPORT to their theory. To be proven, the theory must hold up in ALL cases of scrutiny - not just the first one, the first time someone comes up with an idea to test a theory.
The results of their experimentation may LEND SUPPORT to their theory. Or the results may SEEM to lend support, but are actually the result of something completely different which seem to lend support.
If I look ahead at a road on a hot day, I can plainly see the shimmer of water out in front of me and say this is (in the 2014 context of) "PROOF" the road ahead is wet. And if I had no concept of how heat rising can give an illusion of water on pavement, I pat myself on the back for being so intelligent with my proof.
And, as seems typical nowadays with "scientists," when I get to that point of the road and see how bone dry it is, I then start working on another theory and experiment to prove it was wet until I got there, how the water could instantaneously vanish, and how I was right to begin with.
No... DON'T stop the experimentation in this direction - but keep the results in context of what they really are. You might miss something unexpected by assuming the results are proof of what you were looking to prove.
The Creator
The writer of this article titled it VERY poorly. I've heard before of the theory that the universe may just be a holograph, but that is completely different than "the matrix"
The universe could be proven 100% beyond doubt to be 3D just as we perceive it, and whether or not we live in "the matrix" is an entirely different theory that may or may not be true, completely independent of whether or not the universe is 3D or a 2D holograph.
As far as "the matrix" goes, search Wikipedia for "simulated reality" and the specific section on that page "simulation argument"
Dennis Wright
This could prove to be an interesting experiment, depending upon the results.
Stuart Wilshaw
And next no doubt the will design an experiment to prove the moon really is made of cream cheese...
redjeff53
watch out! if you move just one 'planck-particle' a little, you might affect the entire time continueum!
Load More