Environment

New study says world can be completely powered by clean energy in 20-40 years

New study says world can be co...
According to a new study, 100 percent of the world's energy needs can be met by renewable sources in 20-40 years
According to a new study, 100 percent of the world's energy needs can be met by renewable sources in 20-40 years
View 1 Image
According to a new study, 100 percent of the world's energy needs can be met by renewable sources in 20-40 years
1/1
According to a new study, 100 percent of the world's energy needs can be met by renewable sources in 20-40 years

Here at Gizmag we cover a seemingly endless stream of renewable energy technologies designed to wean us off our reliance on fossil fuels and improve the health of the planet. As important as such developments are, for these technologies to have an impact they must of course be implemented – and on a large scale. What has been sorely lacking is a plan to accomplish such a Herculean feat. Now researchers from the University of California-Davis and Stanford University have published a study that details one scenario to completely convert the world to clean, renewable energy sources – and they say it could be done in 20 to 40 years using technology available today at costs comparable to fossil fuel-based energy.

Electricity the key

The two part paper coauthored by Stanford researcher Mark Z. Jacobson and Mark Delucchi, of UC-Davis, evaluates not only the technology required, but also the costs and material requirements for converting the planet to renewable energy sources. Their plan would see the world running predominantly on electricity, with 90 percent of this sourced from wind and solar. The remainder would be made up from geothermal and hydroelectric sources, which would provide around four percent each, while wave and tidal power would contribute the remaining two percent.For our transport energy needs, cars, trucks, motorbikes, ships and trains would be powered by electricity and hydrogen fuel cells, while aircraft would be fueled by liquid hydrogen. Commercial processes would also be powered by electricity and hydrogen, which would be produced using electricity. Meanwhile, our homes would eschew natural gas and coal in favor of electric heaters, while water would be preheated by the sun.

20 to 40 years

"We wanted to quantify what is necessary in order to replace all the current energy infrastructure – for all purposes – with a really clean and sustainable energy infrastructure within 20 to 40 years," said Jacobson.To that end, the plan would see all new energy generation coming from wind, water and solar by 2030, and all pre-existing energy production converted by 2050. The researchers say that the millions of lives saved by the reduction in air pollution and a 30 percent reduction in world energy demand – thanks to the conversion of combustion processes to the more efficient electrical and hydrogen fuel cell processes – would help keep the cost of such a conversion down.

"When you actually account for all the costs to society – including medical costs – of the current fuel structure, the costs of our plan are relatively similar to what we have today," Jacobson said.

Addressing variability of solar and wind

To overcome that variability of wind and solar and ensure there is a reliable base load of energy Jacobson says wind, water and solar energy sources could be combined as a single commodity as they are generally complimentary. Solar peaks during the day, while wind generally peaks at night, and hydroelectric could be used used to fill the gaps. The plan also envisages the connection of geographically diverse regions using long-distance transmission to overcome energy shortfalls in a given area. If the wind or solar energy generation conditions are poor in a particular area on a given day, connecting widely dispersed sites would allow electricity to be provided from a few hundred miles away where the sun is shining or the wind blowing.

"With a system that is 100 percent wind, water and solar, you can't use normal methods for matching supply and demand. You have to have what people call a supergrid, with long-distance transmission and really good management," said Delucci.

Additionally, off-peak electricity could be used to produce hydrogen for the industrial and transportation sectors and, as it is today, pricing could be used to control peak demands.

Material considerations

While the large-scale construction of wind and solar power plants would require large amounts of materials, the researchers found that even rare materials, such as platinum and the rare earth metals, are available in sufficient amounts for their plan to be realized. They say recycling could also be used to extend the supply further."For solar cells there are different materials, but there are so many choices that if one becomes short, you can switch," Jacobson said. "Major materials for wind energy are concrete and steel and there is no shortage of those."

Crunching the numbers

The researchers also calculated how many wind turbines, solar plants, rooftop photovoltaic cells, geothermal, hydroelectric, tidal and wave-energy installations would be required to provide 100 percent of the world’s energy needs. They found that 0.4 percent of the world’s land would be needed – mostly dedicated to solar – and that the spacing between installations – mostly wind turbine spacing – would add another 0.6 percent, much of which could be used for other purposes."Most of the land between wind turbines is available for other uses, such as pasture or farming," Jacobson said. "The actual footprint required by wind turbines to power half the world's energy is less than the area of Manhattan."

Long way to go

Already 70 percent of the hydroelectric sources needed to realize the plan are already in place, but only about one percent of the wind turbines required and an even lesser percentage of solar power. But the researchers say their plan is doable."This really involves a large scale transformation. It would require an effort comparable to the Apollo moon project or constructing the interstate highway system," Jacobson says. “But it is possible, without even having to go to new technologies. We really need to just decide collectively that this is the direction we want to head as a society."

Th researchers two part paper appears in the journal Energy Policy.

Via Stanford University News.

32 comments
William Jolley
you know, 50-30 years ago when looking at the year 2000, they said we would have flying cars, robotic butlers and all manor of cool things. some how, this article reminds me of those dreams from the past.
Plasma Junkie
HAHAHAHAHAHA. Complete nonsense. The only way they make the numbers work is to fudge the \"evironmental\" costs of fossil fuels. The baseload claims are absurd. The boilerplate installed capacity will have to be at least double the actual demand to come close to ensuring a reliable power supply, and this doesn\'t even begin to address the added costs of a significantly expanded and upgraded transmission grid. And, please, please, please, please, get over the obsession with hydrogen. It\'s a crappy storage medium that is inefficient, leaky, and low energy density.
Anumakonda Jagadeesh
It is too much optimism. Rven simple box type solar cooker which is more than 50 years old is stll to take off! Dr.A.Jagadeesh Nellore(AP),India
greytoma
The authors are not proposing anything fantastical, just the widespread implementation of what technology already exists. All it takes is the will to do it! Which of course the coal gas and oil companies will fight and lobby to the death to weaken and stop.
Todd Dunning
Total garbage. The footprint of wind and solar compared to nuclear is about a thousand to one. Then, the storage issue. The title of the article should be \"clean energy 20-40 years ago\" if we had not allowed hippies to kill nuclear for no reason whatsoever. And now look at the terrible cost.
felix
I can believe that some of this will happen for simply financial reasons. There is money to be made in renewable energy production. We have come a long way in the last ten years, from green energy being seen as a pipe dream of extreme environmentalists to now having gigawatts of installed wind farms, with significant tidal projects in development. All the turbine manufacturers worldwide are booked up for at least two years, there is simply not enough manufacturing capacity to meet demand. Green energy is mainstream now for one simple reason; its profitable.Having said that, coal will be a large part of the mix for the foreseeable future. Its profitable too, so the fact that it may well lead to the extinction of our species (among millions of others), just doesn\'t count. Money talks.
Harold Garey
I think that\'s wishful thinking... Can you comprehend the changes necessary to bring \"green\" power to the back corners of India, Africa, China, Tibet? There are likely places here in the U. S. that still don\'t have telephones.
Facebook User
Hydrogen is the deal breaker, for reasons already stated. Unmentioned is the source of hydrogen. Currently, we obtain ALL our hydrogen from oil. So this proposal does not free us from fossil fuels. I support efforts toward clean energy. But this is pie-in-the-sky talk.
Karrie Hidderley
Unfortunately this excellent plan relies on people being unselfish but wherever wind farms are proposed there are always selfish people who don\'t want to see them ... or worse still, the local gliding club think it will interefere with half a dozen people\'s expensive part-time hobby!
DaddyHoggy
@Todd Dunning - \"no reason at all\"? Really, terrible nuclear accidents, terrible safety record - no methodology for disposing of the waste other than \"let\'s tip it down a big hole and come up with a new language so that our ancestors in 100,000 years time will know when they read the sign that taking the seal out will be a really bad idea.\" I\'m pro-nuclear, but only with a proper thru-life infrastructure in place too. Modern Fast-Breeder reactors theoretically should limit the amount of nuclear waste that needs to be processed, but that needs to be thought out now (or indeed 20 years ago), before we build the plants. However, it\'s too late I suspect, for nuclear to span the upcoming power gap...