The CRISPR gene-editing tool has been successfully used in space for the first time. Researchers onboard the International Space Station have edited colonies of yeast to study how they repair DNA damage, which could be the first steps towards finding ways to protect astronauts against the radiation of space.
CRISPR is one of the most important scientific breakthroughs of the past decade, allowing scientists to easily make cut-and-paste edits to the genomes of living cells. This could potentially help us fight a whole range of diseases, like cancer, HIV, muscular dystrophy and diabetes. But there’s a broad group of health problems that we haven’t yet begun to test CRISPR on – those that arise from space travel.
Having had astronauts visiting, working and living in space for decades now, it’s becoming clear that future spacefarers will be exposed to a whole mess of complications. Thanks to low gravity and high radiation, astronauts can experience loss of muscle mass, and increased risks of diabetes, cardiovascular disease, leaky gut, Alzheimer’s and cancer.
So for the new study, researchers on a project called Genes In Space investigated whether CRISPR behaved any differently in the microgravity environment of space. The team introduced the CRISPR mechanism to colonies of yeast on the ISS and compared them to control groups here on Earth.
The CRISPR sequence was designed to make a particular type of cut to the DNA of the yeast, called a double-strand break. This kind of injury is often inflicted by cosmic rays, and can be particularly harmful. Also included in the CRISPR kit was a sequence that would stain the colony red after they patched up the damage, allowing the scientists to clearly see which colonies had been edited.
And sure enough, some of the colonies on the ISS turned red within six days of the experiment. That indicates that the gene-editing worked, making it the first such demonstration of the technology in space. The team says that this could be the first steps towards developing a way to repair the DNA of astronauts while in space, to keep them healthier as we spend increasing amounts of time away from Earth.
"It's not just that the team successfully deployed novel technologies like CRISPR genome editing, PCR, and nanopore sequencing in an extreme environment, but also that we were able to integrate them into a functionally complete biotechnology workflow applicable to the study of DNA repair and other fundamental cellular processes in microgravity," says Sebastian Kraves, senior author of the study. ”These developments fill this team with hope in humanity's renewed quest to explore and inhabit the vast expanse of space.”
The research was published in the journal PLOS ONE.
Source: PLOS via Eurekalert