A new study led by the University of Edinburgh and Queen Mary University of London has identified a protein that plays a crucial role in protecting the body’s blood stem cells from damage during infection, a finding that could lead to new ways to slow down the aging process.
Hematopoietic stem cells (HSCs) are found in bone marrow, and from there they produce other blood and immune cells. When an infection strikes the body, HSCs are known to ramp up production to fight it off – but that’s raised some questions for scientists in the past. In particular, how do they protect themselves from damage while working overtime?
“We know that inflammatory pathways induced by infection force blood stem cells to rapidly produce immune cells to help combat infections,” says Kamil Kranc, corresponding author of the study. “However, these pathways can eventually exhaust stem cells or cause their premature aging, and it is important to understand how this can be stopped.”
In the new study, the researchers identified a protein called YTHDF2 that seems to be responsible for this important job. When an infection arises, the HSCs produce far more immune cells, but at the same time that triggers inflammatory processes that can damage the stem cells. The study found that the YTHDF2 protein regulates genes that control those inflammatory processes, protecting the stem cells from premature aging.
To investigate the role of YTHDF2, the team engineered mice to be deficient in the protein, then administered a chemical that acts like a viral infection. Sure enough, the mice’s HSCs appeared to suffer chronic inflammation, altering the production of different blood cell types. Interestingly, the blood of these young animals began to resemble that of much older mice.
The new study seems to agree with previous reports that blood transfusions from young animals to older ones can improve the health of the recipient, and even slow the progression of diseases like Alzheimer's. As such, the team says that future work could investigate whether manipulating levels of YTHDF2 may be a potential anti-aging treatment.
The research was published in the Journal of Experimental Medicine.
Source: University of Edinburgh